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Chapter 1

Introduction

‘Chemotaxis’ is a phenomenon of movement of an organism along or against a chem-

ical concentration gradient. When there is an inhomogeneous concentration of some

chemo-attractant present in a system, certain organisms show a tendency to migrate

towards regions of higher chemical concentration. In the case of a chemo-repellant,

the organisms tend to move away from the regions of high chemical concentration.

The term ‘chemotaxis’ was first introduced by the botanist Wilhelm Pfeffer while

studying the responses of a number of different species of bacteria to a variety of

chemicals. EsCheRichia coli (E. coli) is one of the simplest and best understood

micro-organism which shows chemotaxis [1]. In a medium of inhomogeneous nutri-

ents E. coli shows a chemotactic behavior by accumulating in the higher regions of

nutrient concentrations [2].

The size of the E. coli bacterium is very small and the cells are rod-shaped, about 2.5

µm long and about 0.8 µm in diameter, with hemispherical end caps. The cell has a

thin three-layered wall enclosing the cytoplasm which does not have any membrane

enclosed organelles. It has external organelles, thin straight filaments, called ‘pilli’,

which enable it to attach host cells, and thicker longer helical filaments, called flagella

[3], those enable it to swim. This flagella are driven by a rotary motor at their base

which can can turn clockwise(CW) or counterclockwise(CCW).

E.coli cell uses run-and-tumble motion to move around in a medium. During a run,

all the flagellar motors of E. coli rotate counter-clockwise when one looks at the

cell from the back [5]. In run mode the cell moves with an almost constant forward

velocity of about 20 µm/sec, along a near-straight line about 1 sec. When some of the

flagellar motor turns clockwise, the bacterium undergoes a tumble, during which they

1
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do not undergo appreciable displacement but change their orientation randomly. The

tumble duration have a mean value 0.1 sec. In presence of spatially varying nutrient

concentration, E.coli bacteria accumulate in the region of higher concentrations and

it is achieved by the modulation of run durations.

Over the last two-three decades, there has been a rapidly growing understanding of

the mechanisms through which Escherichia coli moves in response to external stimuli.

There are many experiments and models which study different aspects of chemotactic

behavior of E. coli. In this chapter we shall first discuss a set of pioneering experi-

ments in this field and then we will also discuss some theoretical models explaining

collective behavior and single cell behavior exhibited by E. coli bacteria. In the last

section of this chapter, we motivate the problem considered in this thesis and briefly

outline the content of each chapter.

1.1 A brief review on E. coli chemotaxis

1.1.1 Phenotypic response of E.coli bacteria: bilobe nature

and adaptation

To characterize the behavior of E. coli bacterium Block and his colleagues performed

an experiment [6] where cells were tethered [5] by a single flagellum to a glass plate

and exposed to pulses of chemicals. When cells were exposed to a very brief diffusive

wave of attractant, the probability of CCW spin of the motors peaked quickly, then

fell below the pre-stimulus value, returning to baseline within a few seconds. The

repellent responses were similar but inverted. In Fig. 1.1 the impulse response of a

single bacterium in response to a pulse of an attractant is shown. R(t) is the ratio

between the average change in run duration at time t to the run duration of the cell

in a constant background concentration. In another experiment by Segall et al. [7]

the responses of E. coli bacteria to impulse, step and exponential-ramp were studied.

The attractant or repellent concentration were in physiological range, i.e. the stimuli

does not saturate the response of the organisms. The response function indicates that

the cell integrates sensory inputs over a period of seconds, while the bilobe character

implies that they also take time derivatives of these inputs, i.e., the cell compare

between two different concentration experienced in the past and then decide whether

to go upside or downside the concentration gradient. The wild type cells exposed
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Figure 1.1: Impulse response function of wild-type E. coli cell: R(t) is the
ratio between the average change in run duration of a wild type E. coli bacterium
at time t due to an impulse to the run duration of the cell in a constant background
concentration. We have used a discrete sampling of data instead of working with
the complete data set presented in Ref. [7]. This response function has been used
for the simulation in Chapter 2.

to stimuli make short-term temporal comparisons extending 4 seconds into the past.

Stimuli received during the past second are given a positive weighting, and stimuli

received during the 3 seconds before that are given a negative weighting, and the cells

respond to the difference. Impulse responses of mutant cells (cells which has a some

defect in bio-chemical circuits present in it) were similar to those of wild-type cells,

but did not fall as far below the baseline, indicating a partial defect in adaptation.

When exposed to small steps, they fail to adapt over periods of up to 12 sec, when

exposed to longer steps in a flow cell, they partially adapt.

1.1.2 Signaling pathway of the E. coli bacterium

The experiments done by Eisenbach [8], Sourjik et.al [9] , Falke et al [10] and oth-

ers gives the comprehensive picture of how bacteria modulate their flagellar motion

during chemotaxis. The changes in attractant concentrations are sensed by a protein

assembly consisting of transmembrane receptors, a coupling protein (CheW) and a

histidine kinase (CheA) (Fig. 1.2). These components are organized at the cell poles

in tight clusters that contain several thousand copies of each proteins. The results

in [9] indicate that assemblies of bacterial chemoreceptors work in a highly coopera-

tive manner, i.e. the affinity for attractant molecules by the receptors are influenced

by the occupancy of the binding sites of the receptors. The attractant molecules
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Figure 1.2: Simplified chemotaxis pathway inside an E.coli cell

bind to the chemoreceptor [8] called methyl accepting chemotactic protein (MCP)

[10] spanned over the cell membrane of the bacteria. The cytoplasmic side of the

MCP interacts with two proteins called CheW and CheA. When MCP is not bound

to the attractant it stimulates CheA autophospholyration by using ATP molecules.

This autophospholyration is inhibited when the MCP is bound to the attractant.

The phosphrylated CheA donates the phosphate group to the motor protein CheY.

CheW acts as a mediator between the receptor and CheA protein. The phosphate

of CheY are continually removed by the protein CheZ. When there is no attractant

present the bacterium maintains an intermediate levels of CheA phosphate and CheY

phosphate. The rotational bias of the flagellar motors of E. coli is controlled by phos-

phorylated CheY-P inside the cell, which binds to the motors and increases their CW

bias. Importantly, the dependence of CW bias on CheY-P concentration[11] is very

sensitive and experiments measure an almost sigmoidal dependence[12], where CW

bias changes sharply from 0 to 1 as CheY-P concentration varies within a small range.

Since CW bias is the direct measure of tumbling rate, this means the probability for

a cell to tumble is vanishingly small when CheY-P level falls below a certain value,

and when CheY-P level goes slightly higher, the tumbling probability becomes very

close to 1 and the cell almost always tumbles.

When attractant molecules bind to MCP proteins the levels of CheY phosphate drops

and the lack of phosphorylated CheY protein(CheY-P) results in CCW rotation of
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the flagellum, so that smooth run occurs. E. coli must be able to compare between

the most recent attractant concentration to the immediately previous one. This is

accomplished by methylation of MCP. CheR continuously methylates MCP whereas

phosphorylated CheB protein removes the methyl group. When attractant binds to

MCP the CheA-CheW-receptor complex becomes a good substrate for CheR and

poor substrate for CheB-P. The levels of CheB-P drops because of phosphorylation

of CheA is inhibited. Similarly removal of attractant causes the stimulation of au-

tophosphorylation of CheA, which increases the levels of CheY-P and CheB-P. This

simultaneously induces tumbles and demethylation and the system returns to the

lower level of autophosphorylation.

For the system to operate in an inhomogeneous concentration field the adaptation

mechanism must be precise, i.e. the E. coli bacteria must have a well defined internal

signaling mechanism so that the rotational bias of the flagellar motors returns to their

prestimulus value. Though adaptation need not be exact, but it has to be sufficiently

precise to keep cells somewhere near the middle of the motor response curve. In

the model of Barkai and Leibler [13], receptors are in either of two states: active

or inactive. Perfect adaptation is achieved by allowing only methylated receptors to

be active, specifying that CheR works at saturation, and letting CheB-P act only

on receptors that are active. In this scheme, adaptation is robust, in the sense that

return to the initial steady state occurs even when the concentrations of system

components vary widely. This proposition has been confirmed experimentally [14].

1.1.3 The collective behavior of E. coli chemotaxis

Most of the studies in the literature are related to the collective motion of the bacteria

and pattern formation. In 1976 Adler showed the formation of chemotactic rings in

swarm assay which was useful for finding the mutant cells. The formation of chemo-

tactic rings involves interactions between cells that influence one another to remove

the chemoattractants from the growth medium. Rings also form when chemoattrac-

tants are absent in the growth medium [15], provided that cells excrete a chemoattrac-

tant and this phenomenon was also explained by a mathematical model [16]. When

cells of E. coli under conditions of certain cellular stresses excrete attractants, they

form different types of stable multicellular structures. Fluorescence microscopy was

used to characterize the macroscopic properties of the clusters and to track individual

E. coli cells in the clusters in real time. In a quantitative analysis [17] this equilibrium
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cluster size, tumble frequency of an individual cell and the morphology of the cluster

were determined. By considering the E. coli as self-propelled particles undergoing

run-and-tumble dynamics and adding both interactions and noise to the particle

density one can explain the domain formation by ‘self-trapping’ and other collective

phenomena [18]. In recent studies one found the emergence of spontaneously forming

migrating bands of E.coli bacteria inside a microchannel containing microstructured

ratchets [19]. A decrease of bacterial motility with density can also produce a phase

separation of two coexisting densities and which is an arrested nonequilibrium phase

separation in which dense droplets or rings become separated by less dense regions,

with a characteristic length scale [20]. The bacteria, in their natural environment,

need to extract useful information from complex temporal signals that vary over a

wide range of intensities and time scales. Tu et al. [21] studied how this signal is

processed by E. coli during chemotaxis, by developing a theoretical model based on

receptor−receptor cooperativity and receptor adaption. Measured responses to var-

ious monotonic, oscillatory, and impulsive stimuli are all explained consistently by

the underlying adaptation kinetics within this model. This model provides a quanti-

tative system-level description of the chemotaxis signaling pathway and can be used

to predict E. coli chemotaxis responses to arbitrary temporal signals.

1.1.4 Single cell behavior of E.coli chemotaxis

For a given response function the E. coli bacterium can be thought of as a biased

random walker. Schnitzer [22] formulated a general theory of random walks in con-

tinuum, considering the collision rate is a direction dependent quantity. This con-

sideration leads to an effective Smoluchowski equation which enables a description

of biased random walk of E. coli during chemotaxis. According to this model if the

bacteria accumulate in higher concentration region during steady state then the re-

sponse function of cells which perform temporal comparison between the attractant

concentration must be positive and cells which measures averages of the attractant

concentration must be negative. This former prediction explains the observed be-

havior of wild-type cells but the later behavior has not bee observed. De Gennes

[23] calculated the drift velocity of a chemotactic bacteria moving up to the gradient

during the life time of CCW rotation of the flagella. The drift velocity was found to

be proportional to the concentration gradient in this calculation. In the short run, a

favorable response function should move bacteria up chemoattractant gradients and

in the long run, bacteria should aggregate at peaks of chemoattractant concentration,
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Clark et. al [24] shows that these two criteria conflict, so that when one performance

criterion is most favorable, the other is unfavorable. If both performance criteria are

used to calculate the response function, the theoretical function closely matches the

empirical biphasic bias curve measured by Segall et al. [7]. In another studies Celani

and Vergassola [25] shows that the experimental bacterial response corresponds to the

maximin strategy that determines the highest minimum uptake of chemoattractants

for any profile of concentration. They have also shown that the maximin response

is the unique one that always outcompetes motile but nonchemotactic bacteria. The

maximin strategy is adapted to the variable environments experienced by bacteria.

A study by Chatterjee et. al [26] shows that actually there is no conflict between the

different performance criterion observed in different time regime. They have modeled

the E coli bacteria as non-markovian random walker with drift velocity V and diffu-

sion coefficient D. In linear concentration profile for non-adaptive response function

the competition between the constant drift velocity and position dependent diffusion

coefficient will determine whether they will accumulate in the higher concentration

region or not. For adaptive response function the bacteria will behave like a biased

random walker and accumulate in higher food concentration region. This model also

can explain the results obtained in ref [22].

Although there are many theoretical and simulation results for single cell, many early

experiments for E. coli chemotaxis were done with population average to reduce the

noise. Inside a single cell, the number of protein molecules which take part in the

reactions, is often small depending on the type of the signaling protein. This small

number of proteins gives rise to the fluctuation inside a single cell and in recent

experiment it is shown that this fluctuation has significant role in the tumble bias of

an unstimulated cell over long time scale. In absence of any noise in the signaling

pathway, the switching of rotational bias of the flagellar motors is expected to be a

Poisson process and consequently, the duration of a particular run or tumble should

follow an exponential distribution. However, in [27] the switching events of a single

cell in an isotropic medium were monitored in experiment and the residence time

of the motors in the CCW bias was found to follow a power law distribution. It

was argued that the stochastic fluctuation present in the methylation/demethylation

process mediated by CheR and CheB makes it possible to have large fluctuations

in the CCW lifetimes and consequently, the cell can execute really long runs with

significant probability. Since the number of CheR and CheB proteins are of the

order of 200− 400 in comparison to the total methylation site of the order of 60, 000,
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the CheR and CheB proteins work at saturation so that adaption of the cell can

withstand a large variation of behavior of the adapted cell.

In [28] a theoretical model was considered where the CCW and CW bias states of

the motors were modelled as a two-level system whose energy levels depend on the

concentration of the motor protein CheY-P, and as the noise present in the network

causes this protein number to fluctuate, the energy levels also fluctuate with time.

It was explicitly shown that such fluctuations give rise to power law distribution for

the lifetime of the CCW state. Similar power laws have been obtained by considering

the fluctuations in CheR protein level in the pathway of non-stimulated cells [29, 30].

For a single bacterial motor, the time-series of switching events were experimentally

measured and for large CW bias, which corresponds to higher CheY-P level, and

hence smaller fluctuations, the CCW intervals show exponential distribution, while

for small CW bias, when fluctuations in CheY-P level are more significant, CCW

intervals show power law distribution [31, 32].

Interestingly, the large fluctuations present at the single cell level do not impair the

chemotactic response or robust adaptation [13, 14] observed at the population level

[33]. The ultra-sensitivity of the signaling network, caused by break down of first

order reaction kinetics, is responsible for amplification of molecular noise and gener-

ating large variability on one had, and giving rise to accurate chemotactic response to

small stimuli, on the other [34]. The behavioral variability and chemotactic response

are infact found to be related to each other via fluctuation-response theorem which

enables one to predict the response from pre-stimulus variability [35]. In [36] it has

been shown that the overall chemotactic performance improves as a result of interplay

between the signaling noise and multiple flagellar motors. While presence of multiple

motors brings down the motor response time, the lack of coordination in their switch-

ing may interrupt the long runs. In presence of a steep gradient of chemo-attractant

concentration, a shorter response time is beneficial, but when the gradient is shallow,

longer runs are typically needed to perform chemotaxis. Presence of noise in the sig-

naling pathway generates longer runs and improves the chemotactic performance in

shallow gradients [36]. In [37] a direct coupling between the flagellar motors was sug-

gested as a possible mechanism of their coordinated switch. The benefit of network

noise for special choices of the nutrient concentration profile was highlighted in [38]

where by studying the motor response to the noisy output of signaling network it was

shown that in presence of a sinusoidal concentration profile of the nutrient, the long

term chemotactic performance of the cells does not improve as the noise falls below
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a threshold level. Moreover, the chemotactic drift velocity for an exponential gradi-

ent of nutrient concentration is enhanced with noise and reaches a maximum value

at a noise level which is comparable to the above threshold value [38]. Noise may

prove beneficial even in a more generic nutrient environment, where large variability

in a cellular population ensures that different cells behave in different ways and each

type of behavior may be suitable for one particular type of environment [39, 40]. In

[41] the motor response was studied for wild-type and mutant bacterial cells and by

comparing the response obtained in models with and without noise, it was shown

that noise enhances the chemotactic sensitivity of the signaling network. In [33] the

connection between cellular noise and robust adaptation was directly probed in ex-

periment. The correlations between the motile behavior of the cell and the number

of CheR and CheB protein molecules in the signaling network were measured and it

was shown that while the mean behavior of the cell depends on the ratio of CheR

and CheB, the variance can be changed by tuning the global concentration levels

of these two proteins. This shows that it is possible to control variability of a cell

population without affecting the robustness, which is related to the mean behavior.

In more recent experiments [42, 43] it is shown that the fluctuation present in the

single cell not only comes from the proteins involved in the adaptation mechanism

but also from the allosteric interactions within receptor clusters.

1.2 Motivation and the plan of the thesis

In this thesis, we are interested in two broad questions. The first one is related

to chemotactic performance of an E. coli cell and the second one is related to its

run-and-tumble motion. We briefly describe these questions below.

We ask how the chemotactic performance depends on the extra-cellular nutrient

environment and the intra-cellular biochemical conditions. Particularly, are there

any optimum conditions that make this performance most efficient? For an efficient

chamotactic performance, the cell should be able to find the nutrient-rich regions

quickly and localize there. We identify a set of well-defined response functions which

characterize different aspects of chemotactic performance and study their dependence

on the extra-cellular environments as well as the intracellular signaling pathway [44]

of the bacteria. For quick search process we measure the average first passage time,

which is defined as the time taken to reach the target for the first time (or complete

the search process). An efficient search process corresponds to a short first passage
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time [45–47]. The chemotactic drift velocity is defined as the steady state average

velocity with which the cell climbs up the chemical concentration gradient, and larger

values of drift velocity clearly indicates a better performance. The nutrient concen-

tration, averaged over the steady state distribution of the cell position, measures how

effectively the cells are localized in the nutrient-rich regions. For many time depen-

dent nutrient concentrations, the study of the amount of nutrient encountered by the

cell along its trajectory, which is called uptake [25], becomes useful to study. We in-

vestigate how these different response functions depend on the external environment

and the internal biochemical pathway of the E. coli cell and at what conditions the

chemotactic performance becomes most efficient.

The second question of this thesis deals with the run-and-tumble motion of the cell.

Experiments[12] show that the CW bias of the flagellar motors has a sensitive depen-

dence on the intra-cellular concentration of CheY-P motor protein which fluctuates

with time. As the CheY-P level varies within a small range, the CW bias changes

from 0 to 1. Since CW bias is interpreted as the tumbling probability of the cell, this

means the tumbling probability is zero (one) as the CheY-P concentration falls below

(above) a certain small range. These observations give rise to a more general and

interesting theoretical question: what is the effect of a sharp or sigmoidal switching

response on a simple run-and-tumble motion? To address this general question, we

consider a run-and-tumble random walker whose switching probabilities between run

and tumble modes depend on a certain (stochastic) input signal. We characterize

the motion of this random walker in the long time limit, and investigate how the

fluctuations present in the input signal affect the motion.

In Chapter 2 we study chemotaxis motion of a single bacterium in presence of a

diffusing nutrient profile. We take a Gaussian concentration field of the nutrient

and measure the average first passage time of the bacterium at the neighborhood

of the Gaussian peak using Monte Carlo simulation. When the nutrient diffuses

very slowly, the average first passage time shows a minimum as a function of σ,

where σ is the width of the nutrient at the time of starting the chemotaxis. In

other words, there is an optimum value of σ for which the search process is most

efficient. This finding is interesting, since σ is a parameter that can be easily tuned

in an experiment and our study shows that when σ is set at a special value, the

bacterium becomes the most efficient searcher and is able to find its favorable region

in the shortest possible time. We also perform analytical calculations of mean first

passage time within a coarse-grained model which allows an approximate Markovian
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description of the bacterial motion [26]. We find reasonably good agreement between

our analytics and numerics. We consider deterministic initial condition as well as

stochastic initial condition, drawn from uniform and steady state distribution. In all

the cases our numerical simulation and analytical calculations show existence of an

optimum width of the nutrient concentration profile when the search process is most

efficient. For time-varying nutrient concentration profile, our simulations show that

if the chemotaxis starts at an early stage of nutrient diffusion, when the width of

the Gaussian is still small, then the mean first passage time shows a minimum as a

function of the nutrient diffusivity. But if the chemotaxis starts at a late stage, when

the nutrient has already spread considerably in the medium and the width of the

Gaussian profile is large, the mean first passage time increases monotonically with

nutrient diffusivity.

In Chapter 3 we see the effects of the fluctuation present in the chemotactic pathway

on the behavior of a single cell E. coli bacterium in presence of a homogeneous nutrient

environment. We argue that the most important source of signaling noise is the

methylation-demethylation reaction. Our simulation results show that while for small

noise, the run-length distribution is exponential, as noise increases, the distribution

becomes a power law. We also calculate the CheY-P level distribution, which is

important for the bacterial run-tumble motion, analytically for various strength of

methylation noise. From this we calculate the average run-length of the bacterium,

when there is a constant background concentration. We found a good agreement

between the analytics and the simulation results. The CheY-P level distribution

becomes narrow if the noise is small but for very large noise distribution becomes

wide and develops a long tail.

In Chapter 4 we study the effects of noise in the signaling pathway on the efficiency of

chemotactic performance of a single cell in presence of a nutrient concentration profile

that varies in space but does not change with time. For this we study the variation

of localization and drift velocity. Our simulation shows that, the localization and

drift velocity show non-monotonic variation with noise strength. There is an optimal

noise strength at which each of these quantities becomes maximum. As explained

in second paragraph of this section, these quantities characterize different aspects

of the chemotactic performance and our result shows that a particular noise level in

the intracellular reactions brings out the best possible performance from the bacterial

cells. This finding is rather interesting and counter-intuitive. We explain this striking

effect by performing detailed measurement of CheY-P level statistics. We argue that
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the chemotactic response is the result of differential behavior of the cell up and down

the nutrient concentration gradient. At very large noise level, this difference becomes

small since the tumbling frequency is almost totally controlled by the stochastic

fluctuations of the methylation level, and not by the local nutrient concentration. The

chemotactic performance is therefore poor when noise level is high. To understand

why the performance gets worse again when the noise level is very low, we resort

to a detailed analysis of CheY-P level fluctuation. We show that when CheY-P

level falls below a certain threshold value, the cell shows a tendency to migrate

towards regions of low nutrient concentration, which affects its overall chemotactic

performance adversely. This threshold value decreases with noise strength, and hence

the performance improves with noise.

In Chapter 5 we consider the case where the chemoattractant concentration has

an explicit time-dependence, e.g. the chemoattractant molecules can have a finite

lifetime, beyond which it degrades, or the molecules can perform diffusive motion

in the medium. In such situations, the long term chemotactic performance, based

on the steady state location of the cells, may not be a suitable criteria to consider.

Rather an efficient chemotaxis in this case will involve climbing up the concentration

gradient while it lasts, and spotting the nutrient-rich regions as quickly as possible.

For this case we measure the first passage time and the uptake of the bacterium

and see the effects of the noise on this quantities. We find that the first passage

time of the cell decays monotonically with noise. Since long runs are more probable

at large noise, the cell explores the system faster and the first passage time goes

down. For time-dependent environment, when the nutrient is degrading, or diffusing

in the medium, our measurement of uptake again shows a peak at a particular noise

strength. However, in this case, there are more parameters in the system, e.g. lifetime

or diffusivity of the nutrient, and one has to tune these parameters also to find the

best chemotactic performance.

The simple biochemical pathway model that we have used in Chapters 3,4 and 5

does not include the adaptation mechanism of the flagellar motors. To verify how

sensitive our results are on motor adaptation properties, we have studied in Chapter

6 a model that explicitly considers motor adaptation. We find that all our qualitative

conclusions remain valid in this case.

In Chapter 7, we address the second broad question of the thesis, that is related

to run-and-tumble motility in general. We define a simple run-and-tumble random

walker whose switching probability from run mode to tumble mode and the reverse
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depend on a stochastic signal. We consider a particularly sharp, step-like dependence.

We are interested in characterizing the effect of signaling noise on the long time

behavior of the random walker. We consider two different time-evolutions of the

stochastic signal. In one case, the signal dynamics is an independent stochastic

process and does not depend on the run-and-tumble motion. In this case we can

analytically calculate the mean value and the complete distribution function of the

run duration and tumble duration. In the second case, we assume that the signal

dynamics is influenced by the spatial location of the random walker. For this system,

we numerically measure the steady state position distribution of the random walker.

We discuss some similarities and differences between this simple random walk model

and the system of E. coli chemotaxis.
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Chapter 2

Effects of extracellular

environment on search process of

E. coli

2.1 Introduction

In a wide variety of physical systems, search process plays an important role [1]. Ex-

amples can be found in systems like animals searching for food [2], proteins searching

for the binding site on DNA [3], or in general diffusion-limited reactions [4]. A search

process is often characterized by the first passage time, which is defined as the time

taken to reach the target for the first time (or complete the search process). An effi-

cient search process corresponds to a short first passage time. Therefore it is crucial

to determine how the first passage time depends on the system parameters. The

most efficient search strategy is often determined by looking into the minimum of

the first passage time in this parameter space [5, 6]. Here we consider the search

process in one of the most well-studied biological systems, viz. E.coli chemotaxis,

which describes the motion of E. coli bacteria in response to a chemical concentra-

tion gradient. When such bacteria are placed in an inhomogeneous concentration of

a nutrient, they show a tendency to migrate towards the nutrient-rich region. We

ask the question: how long does it take for the bacteria to find the most favorable

region and under what conditions this search process is most efficient.

18
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Now imagine a situation where a puff of nutrient is injected into the medium such

that immediately after injection, all the chemical is concentrated in a narrow region.

As time goes on, this chemical spreads over the medium via diffusion and at any given

time its concentration profile has the form of a Gaussian. At a certain stage of this

nutrient diffusion, when the nutrient has already spread through some distance in

the medium, a bacterium is released somewhere in the medium which then performs

chemotaxis. If the time-scale of nutrient diffusion is much longer than that of bacterial

motion, the bacterium would effectively experience a Gaussian concentration profile of

fixed width. When the nutrient diffusion and bacterial motion occur over comparable

time-scales, then the concentration sensed by the bacterium will be time-dependent

and can be described as a Gaussian whose width keeps increasing (and peak height

keeps decreasing) with time, as follows from the diffusion equation. The region around

the peak of the Gaussian profile is the most favorable region for the bacteria, where

the nutrient concentration is highest.

In this chapter, we study chemotaxis motion of a single bacterium in presence of

a Gaussian concentration field of the nutrient. We measure the average and the

typical first passage time of the bacterium at the neighborhood of the Gaussian peak

using Monte Carlo simulation. For slow nutrient diffusion we found that the average

first passage time shows a minimum as a function of σ, where σ is the width of

the nutrient at the time of starting the chemotaxis. In other words, there is an

optimum value of σ for which the search process is most efficient. This finding is

interesting, since σ is a parameter that can be easily tuned in an experiment and our

study shows that when σ is set at a special value, the bacterium becomes the most

efficient searcher and is able to find its favorable region in the shortest possible time.

We also perform analytical calculations of mean first passage time within a coarse-

grained model which allows an approximate Markovian description of the bacterial

motion [7]. We find reasonably good agreement between our analytics and numerics.

We consider deterministic initial condition as well as stochastic initial condition,

drawn from uniform and steady state distribution. In all the cases our numerical

simulation and analytical calculations show existence of an optimum width of the

nutrient concentration profile when the search process is most efficient.

In the case when the time-scale of nutrient diffusion is comparable to that of bacterial

motion, the bacterium experiences a time-varying concentration profile—a Gaussian

whose width increases with time. The search process now crucially depends on the

nurtrient diffusivity, as well as the extent of spread of the nutrient in the medium at
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the onset of chemotaxis. Our simulations show that if the chemotaxis starts at an

early stage of nutrient diffusion, when the width of the Gaussian is still small, then

the mean first passage time shows a minimum as a function of the nutrient diffusivity.

But if the chemotaxis starts at a late stage, when the nutrient has already spread

considerably in the medium and the width of the Gaussian profile is large, the mean

first passage time increases monotonically with nutrient diffusivity.

In the next section 2.2, we present our model for simulation and the coarse-grained

model for analytical calculation of the first passage time in presence of time-independent

Gaussian concentration profile. Sections 2.4 and 2.5 contain our analytical and nu-

merical results, respectively, for a time independent Gaussian nutrient concentration.

In section 2.6 we present our results for time-varying Gaussian concentration field.

The conclusion is presented in section 2.7.

2.2 Model for the simulation and measurement of

the first passage time

Following [7–9] we model the motion of a single bacterium in one dimension as a non-

Markovian random walker whose dynamics is governed by runs and tumbles. During

a run the bacterium moves along one particular direction with a fixed velocity. The

duration of a run is a stochastic variable and follows a Poissonian distribution with

a mean of one second in a homogeneous medium [10–12]. At the end of a run, the

bacterium goes into a tumbling mode, when it rotates about itself in a random fashion,

without much net displacement, before it starts running again in a new direction. An

average tumble duration (0.1s) being much smaller than runs , tumbles are modeled

as instantaneous events which allow the bacterium to change its direction between

two successive runs. The probability that the run direction is changed (reversed)

is denoted as q. In presence of a nutrient concentration gradient in the medium,

the tumbling rate depends on the recent history. The probability that a running

bacterium tumbles during a time-interval [t, t+ dt] is then given by

dt

τ

(

1−
∫ t

−∞
dt′R(t− t′)c[x(t′)]

)

(2.1)

where τ is the mean run duration in a homogeneous environment, c[x(t′)] is the

concentration experienced at a past instant t′ < t and R(t) is the response kernel.
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R(t) contains information about the signaling pathway present inside the bacterial

cell and it was measured experimentally for wild type bacteria in [12, 13]. R(t) was

shown to have a bilobe shape, with a relatively sharp positive lobe at smaller t and

a shallow negative lobe at larger t that vanishes for t & 4s (see Fig. 1.1).

We are interested in the linear response regime, where the integral in Eq. 2.1 is

much less than unity. Within this linear regime, one can decompose the above bilobe

response kernel into a sum of delta-functions of suitably chosen amplitude and can

be written as R(t) =
∑n

i=1 αiδ(t−∆i), so that the Eq. 2.1 becomes

dt

τ

(

1−
n
∑

i=1

αic[x(t−∆i)]

)

(2.2)

where, αi’s are the amplitudes of single delta function response functions and ∆i’s are

the memory parameters. For ∆i = 0, the tumbling probability at time t in Eq. 2.2

depends on the nutrient concentration experienced by the bacterium at time t, hence

the process becomes Markovian. But for non-zero ∆i’s the tumbling probability will

depend on the concentration experienced at time t−∆i, which makes the process Non-

Markovian. We have chosen αi << 1 for all delta functions so that the summation in

Eq. 2.2 becomes much less than the unity. We first consider a single delta function

R(t) = αδ(t−∆) and analyze this case in detail, where we keep terms only upto first

order in α. Later we generalize our results for the full response kernel by superposing

the solutions for this single delta-function kernels to obtain the solution for the full

bilobe response.

We perform our simulation on a one dimensional box of size L, with reflecting bound-

ary walls at the two ends. In a time-interval dt the bacterium moves by a distance

vdt. At the end of each time-step, we compute the tumbling probability, as in Eq.

2.2. For an impulse response function R(t) = αδ(t−∆), the tumbling probability at

time t is given by dt/τ (1− αc[x(t−∆)]), where x(t−∆) is the position of the bac-

terium at a time ∆ back in the past, c[x(t−∆)] is the concentration experienced by

the bacterium at that past instant of time. At the end of one time-step the bacterium

attempts to tumble with this probability. If the tumbling attempt is unsuccessful,

it continues to move in the same direction with same velocity v and if the tumbling

attempt is successful, the bacterium changes its direction (in this one-dimensional

case, it reverses the sign of v) with probability q. Starting from a given initial po-

sition x at t = 0, we measure the first passage time at a position x0, and average
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over different trajectories. In order to avoid the region with rapid spatial variation of

the concentration field, we consider a target which is one mean free path away from

the Gaussian peak in the same direction as the starting position of the bacterium:

x0 = x− vτ .

2.3 Analytical calculation in a coarse-grainedMarko-

vian description

In an earlier study [7] a coarse-grained model was proposed for describing a single

bacterium in a nutrient concentration gradient in one dimension. The bacterium was

assumed to be confined in a one-dimensional box of length L with reflecting boundary

walls. Although the underlying run-tumble motion is non-Markovian, one can still

expect that at a coarse-grained level, a Markovian description might be possible.

For this purpose, we coarse-grain over a time-scale which is much larger than the

typical run-duration τ and assume that the average bacterial density within the

spatial resolution of coarse-graining, which is much greater than vτ , has a Markovian

dynamics. For the time-evolution of this coarse-grained density P (x, t) at point x,

at time t, the following Fokker-Planck equation was formulated in [7].

∂tP (x, t) = −∂x [V (x)P (x, t)− ∂x(D(x)P (x, t))] (2.3)

which is the equation for a random walker with position dependent drift and diffu-

sion. The chemotactic drift velocity V (x) and the diffusivity D(x) will depend on

the nutrient concentration profile c(x) and the dependence can be derived from the

microscopic dynamics. In an earlier calculation by de Gennes[14] an approximate

expression for the average displacement in a run was obtained within the simplifying

assumption that whenever a running bacterium tumbles, its past memory is lost. The

resulting expression for average displacement in a single run for R(t) = αδ(t−∆)

∆x = αv2τ 2e−
∆
τ ∂xc(x) (2.4)

was found to show good agreement with the simulation results in [7] for q = 0.5.

The drift velocity for q 6= 1/2 is given by [Appendix A],

V (x) = αc
v2τ

2q
. (2.5)
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The above expression for drift velocity was calculated for the choice of response

function R(t) = δ(t), where, ∆ = 0. For non-Markovian case where ∆ 6= 0, the Eq.

2.5 will have an extra factor e−
2q∆
τ as in Eq. 2.4. For a non-Markovian random walker

in presence of any concentration profile c(x) Eq. 2.5 becomes

V (x) = α
v2τ

2q
e−

2q∆
τ ∂xc(x) (2.6)

provided that the gradient remains small or in another words this expression is valid

in weak gradient limit.

To calculate the diffusivity D(x), the effective tumbling frequency was calculated

within the coarse-grained model, by averaging over a population of non-interacting

bacteria within the coarse-graining length-scale. Although the tumbling frequency of

a single bacterium depends on the details of its past trajectory, this dependence is

lost when averaged over a large number of bacteria with two possible run-directions

in one dimension. The average tumbling frequency at a position x can be shown to

be [1− αc(x)]/τ from which the diffusivity turns out to be [7]

D(x) =
v2τ

2q
[1 + αc(x)]. (2.7)

Using Eqs. 2.6 and 2.7 it can be easily shown from Eq. 2.3 that in the steady state

the bacterial density P (x) has the form

P (x) = P0 + αP0(e
− 2q∆

τ − 1)

(

c(x)− P0

∫ L

0

c(x)dx

)

. (2.8)

In the next section, we use the above coarse-grained model to calculate the mean first

passage time of the bacteria at the nutrient-rich region. Note that unlike the steady

state behavior, studied in [7], we study first-passage properties, away from steady

state.

2.4 Analytical calculation of first passage time

Let P (y, t|x, 0) be the conditional probability to find the bacterium at position y at

time t, given that it started at x at t = 0. This conditional probability follows the
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backward Fokker-Planck equation [15]

∂tP (y, t|x, 0) = V (x)∂xP (y, t|x, 0) +D(x)∂2xP (y, t|x, 0). (2.9)

One should note that this Eq. 2.9 is different from the forward Fokker Plank equation,

where the space derivative in the right hand is with respect to the current position

at time t. But in this Eq. 2.9 the space derivative in r.h.s. is with respect to the

initial position x at time t = 0. To find out the first passage time at a certain point

x0 (which we call the target), we consider an absorbing boundary at x0, in addition

to the reflecting boundary at x = 0 and x = L. Without any loss of generality,

we perform all our measurements for x < x0. The survival probability G(x, t) that

starting from an initial position x, the bacteria has not reached the target till time

t can be written as G(x, t) =
∫ x0

0
dyP (y, t|x, 0). From Eq. 2.9 it follows that G(x, t)

satisfies the following equation

∂tG(x, t) = V (x)∂xG(x, t) +D(x)∂2xG(x, t) (2.10)

with the initial condition G(x, 0) = 1. The reflecting and absorbing boundary condi-

tions are implemented as ∂xG(0, t) = 0 and G(x0, t) = 0, respectively.

By definition, G(x, t) is the probability that the first passage time of the walker start-

ing from x to reach at x = x0, is larger than t and hence the first passage time distri-

bution is given by −∂tG(x, t). Mean first passage time T (x) = −
∫∞
0
dt t ∂tG(x, t) =

∫∞
0
dt G(x, t) which follows the equation

V (x)∂xT (x) +D(x)∂2xT (x) = −1. (2.11)

The solution of this equation has the form

T (x) =

∫ x0

x

dy

ψ(y)

∫ y

0

ψ(z)

D(z)
(2.12)

where ψ(x) = exp
[∫ x

0
dx′V (x′)/D(x′)

]

. Now, using Eqs. 2.6 and 2.7 and keeping

terms only upto first order in α, one can write ψ(x) = exp
[

αe−2q∆/τ{c(x)− c(0)}
]

=

1 + αe−2q∆/τ [c(x)− c(0)]. After few steps of simple algebra we finally have

T (x) = 2q
v2τ

[
x2
0−x2

2
− α(1− e−2q∆/τ )

∫ x0

x
dy
∫ y

0
dz c(z)

−αe−2q∆/τ
∫ x0

x
dy y c(y)] (2.13)
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which can be written in the form T (x) = T0(x) + αT1(x), where T0(x) stands for

the mean first passage time for the case when V (x) = 0 and D(x) = v2τ
2q

, and T1(x)

gives the first order correction term when position-dependent drift and diffusion are

present, due to a spatially varying concentration field c(x). In the rest of this chapter

we focus on T1(x).

For a Gaussian concentration profile c(x) =
exp[−(x− x)2/2σ2]√

2πσ2
the drift velocity

V (x) and diffusivity D(x) show rapid variation close to the peak at x. In our coarse-

grained description, that allows for analytical treatment, we deal with length scales

much larger than the mean free path of the bacteria and any spatial variation that

occurs over a smaller length scale must be neglected in our coarse-grained model.

When σ is not too large, the variation of V (x) and D(x) around the peak are too

fast to be considered in our coarse-grained formalism. Because of this we avoid the

peak position in our calculation of first passage time, by choosing the target position

x0 such that both the initial position x and the target lies on the same side of the

peak. For our choice of x < x0 < x we use the Gaussian c(x) in Eq. 2.13 and get

T1(x) =
2q

v2τ

[

1

2
Erf

(

x− x0√
2σ

)

(

e−
2q∆
τ (2x− x0)− (x− x0)

)

+
1

2
Erf

(

x− x√
2σ

)

(

e−
2q∆
τ (x− 2x)− (x− x)

)

(2.14)

+
1

2
Erf

(

x√
2σ

)

((

e−
2q∆
τ − 1

)

(x0 − x)
)

+

(

e−
(x−x0)

2

2σ2 − e−
(x−x)2

2σ2

)

(

2e−
2q∆
τ − 1

) σ√
2π

]

,

where Erf(x) is the Error function and defined as Erf(x) = 2√
π

∫ x

0
e−t2dt.

So far we have considered the first passage time with a fixed initial condition, where

the bacterium always starts from a fixed initial position x. But this initial condition

easily can be generalized to the cases where, the initial position x is stochastic and

can take any value within the interval 0 < x < x0, i.e. the initial position can

lie anywhere between the left boundary and the target, with a certain distribution

function. We consider two specific cases: (i) when x follows a uniform distribution P0

and (ii) when x is drawn from the steady state distribution P (x) in Eq. 2.8. In the

first case, the α-order correction in the first passage time can be obtained by simply
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integrating Eq. 7.10 over x:

T
(u)
1 = P0

∫ x0

0

dxT1(x)

=
2qP0

v2τ

[

1

4

{

Erf(
x̄√
2σ

)−Erf(
x̄− x0√

2σ
)

}

(2.15)

{

e−
2q∆
τ (x20 − 3x̄2 − 3σ2)− (x20 − x̄2 − σ2)

}

+
1

2
√
2π
σ(3e−

2q∆
τ − 1)

(

(x0 + x̄)e−
(x0−x̄)2

2σ2 − x̄e−
x̄2

2σ2

)

]

For the case (ii) the initial position x follows the steady state distribution in Eq. 2.8.

The mean first passage time is then written as

∫ x0

0

dxP (x)T (x) =

∫ x0

0

dx

[

P0 + αP0(e
− 2q∆

τ − 1) (2.16)

(

c(x)− P0

∫ L

0

c(x)dx

)

]

(T0(x) + αT1(x)) .

For a Gaussian form of c(x) the α-order term becomes

T
(s)
1 = P0

∫ x0

0

dxT1(x) + P0
(e−

2q∆
τ − 1)√
2πσ2

∫ x0

0

dxe−
(x−x̄)2

2σ2 T0(x)

−P 2
0 (e

− 2q∆
τ − 1)Erf

(

x0√
2σ

)
∫ x0

0

dxT0(x) (2.17)

where T0(x) and T1(x) are defined in Eqs. 2.13 and 7.10. After straight-forward

algebra the α-order term in first passage time with steady state initial condition

becomes

T
(s)
1 =

2qP0

v2τ

[

1

2

{

Erf

(

x̄√
2σ

)

−Erf

(

x̄− x0√
2σ

)}

(

e
− 2q∆

τR (x20 − 2x̄2 − 2σ2)− (x20 − x̄2 − σ2)
)

+
σ√
2π

(

2e
− 2q∆

τR − 1
)

{

(x0 + x̄)e−
(x̄−x0)

2

2σ2 − x̄e−
x̄2

2σ2

}

−P0x
3
0

3

(

2e
− 2q∆

τR − 1
)

Erf

(

x̄√
2σ

)

]

(2.18)

The results in Eqs 7.10, 2.16 and 2.18 are for an impulse response kernel R(t) =

αδ(t−∆) and these can be easily generalized for any arbitrary response function. In
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the next section, we measure the first passage time in simulation and compare with

above analytical calculation.

2.5 Simulation results on first passage time in pres-

ence of static Gaussian nutrient concentration

In Fig. 2.1 we show the variation of T1(x) with σ (discrete symbols) and compare

with our analytical result in Eq. 7.10 (continuous lines). We find reasonably good

agreement between our simulation and analytical calculation. For very small σ the

concentration variation can be perceived only within a very narrow region around

the peak x. Hence the bacterial trajectory starting from x and ending at x0, which

does not cross the peak at x, consists of isotropic diffusion for most part. As a result,

in the limit of small σ the mean first passage time is given by that for an ordinary

Brownian motion and is equal to T0(x) in Eq. 2.13 and the first order term T1(x)

goes to zero. Similarly, in the limit of very large σ the profile is almost flat and

even in this case the motion is close to isotropic diffusion and T1(x) vanishes. Our

simulation and analytical calculation are consistent with this simple argument.

For intermediate σ values, T1(x) must show a non-monotonic variation, since it van-

ishes for small and large σ. We find a minimum for T1(x) at a particular width σ∗.

In other words, there exists an optimal width σ∗, when the first passage time at the

nutrient-rich region becomes shortest and the bacterium becomes the most efficient

searcher. The bottom-right and the top-right insets of Fig. 2.1 show the variation of

the optimal width σ∗ as a function of the initial position x and the memory ∆ of the

bacterium, respectively. Note that even in the Markovian limit, when the bacterium

does not have any memory, and in the long time limit does not accumulate in the

nutrient-rich region [7], its first passage properties still show existence of an optimal

width when the search is most efficient.

For wild-type bacteria, the response kernel has a bilobe shape and we can reconstruct

the kernel as a linear superposition of impulse response functions with suitable am-

plitudes, as shown in Fig. 1.1. We use this response kernel to calculate the mean

first passage time for various σ. Even for this adaptive bilobe kernel we find there

exists an optimal width when the mean first passage time hits a minimum. Our

analytical calculations show similar results. Interestingly, the value of the optimum

width σ∗ does not change even when the initial position and the target position are



28

-0.13

-0.125

-0.12

-0.115

-0.11

-0.105

-0.1

-0.095

-0.09

 40  60  80  100  120  140  160  180  200

T
1(

x)

σ

-0.24

-0.16

-0.08

 0

 0  80  160

T
1(

x)

σ

 100

 200

 300

 0  1  2  3  4

σ*  

∆

 80
 100
 120

 100  200  300

σ*

 x 

Figure 2.1: Results for the mean first passage time with a fixed initial position.
The main plot shows T1(x) (in seconds) as a function of standard deviation σ
(in µm) of the Gaussian nutrient concentration field with R(t) = αδ(t − ∆) and
∆ = 0.5s, x = 300µm. The top-right and bottom-left insets show the variation of
the optimum width σ∗ (in µm) as a function of ∆ (in seconds) and the initial po-
sition x (in µm), respectively. The top-left inset shows T1(x) (in seconds) vs σ (in
µm) variation for the bilobe response kernel, shown in Fig. 1.1. The discrete sym-
bols correspond to simulations and the continuous lines correspond to analytical
calculations. Here L = 1000µm, x0 = 490µm, x̄ = 500µm, q = 0.5, τ = 1s.

varied (data not shown here). In other words, an wild-type E.coli bacterium becomes

the most efficient searcher when placed in an environment of Gaussian concentration

profile of nutrient with a width of ∼ 50µm.

Instead of starting from a fixed position, even when the initial position is a random

variable which can choose any value between the left boundary wall at x = 0 and the

target at x = x0 with a certain distribution, our results show existence of an optimum

σ that minimizes the first passage time. We have considered initial positions chosen

from uniform distribution as well as from steady state distribution in Eq. 2.8 and

present our data in Fig 2.2. Note that for the choice of a steady state initial condition,

T
(s)
1 does not vanish in the limit of small σ but approaches a constant value. In other

words, even when the width of the nutrient concentration profile is vanishingly small,

the first passage time of the bacterium is not same as in a homogeneous medium. In

fact when the system is in steady state, the bacterium has explored the full system

and has already experienced the narrow concentration profile present in the middle
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Figure 2.2: Mean first passage time with stochastic initial positions. Top panel
shows data for impulse response R(t) = αδ(t−∆) and bottom pannel for the bilobe
response. (A) and (B) show data for uniform initial condition, when x can take
any value in the range [0, x0] with uniform probability P0. (C) and (D) show data
for steady state initial condition, when the value of x in the range [0, x0] is drawn
from the steady state distribution P (x) in Eq. 2.8. Here the first passage time is
measured in the units of seconds and σ in µm. The other simulation parameters
are same as in Fig. 2.1. The discrete symbols are for numerical data and the
continuous lines are for analytical calculations.

of the box. The steady state measure P (x) is therefore not same as P0, but contains

information about the narrow concentration field. This gives rise to a non-vanishing

α-order correction term in the limit σ → 0.

2.6 First passage time for time-varying Gaussian

concentration field

In this section, we consider the case when the nutrient diffusion in the medium occurs

over a time-scale comparable to that of bacterial motion. The bacterium will then

experience a time-varying concentration field. Our analytical formalism in section 2.4

does not work in this case and we study the system using numerical simulations. The

simplest description of the nutrient concentration profile can be given by a Gaussian

whose width is increasing with time: c(x, t) = exp

(

− (x− x)2

σ2
0 + 4Dt

)

/
√

2π(σ2
0 + 4Dt),
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Figure 2.3: First passage time for time-dependent concentration of the nutrient.
(A) shows the variation of T1(x) (in seconds) as a function of σ0 (in µm) with D
held fixed at 0.01µm2/s (red squares), 10µm2/s (green circles) and 37µm2/s (black
diamonds). (B) shows T1(x) (in seconds) vs D (in µm2/s) plot for σ0 = 30µm (red
squares), 50µm (green circles) and 120µm (black diamonds). The other simulation
parameters are same as in Fig. 2.1 main plot.

where σ0 is the width at the time when the chemotaxis motion starts, and D is the

nutrient diffusivity.

The bacterial motion will depend on σ0 and D depending on the time-scale tc ∼ σ2
0/D.

For t ≪ tc the motion depends on σ0 and for t ≫ tc the motion is mainly controlled

by D. In the limit of very small D, therefore, one would expect the first passage time

to be a function of σ0 alone. In fact this is the limit when the nutrient diffusion is

very slow, and during the time-interval of the first passage at the target, the width

of c(x, t) changes very little. In this limit, therefore, one expects similar results as

in a static concentration profile. Our simulation data in In Fig. 2.3A indeed shows

that for small D there is an optimum width σ0 where T1(x) becomes minimum. As

D increases, tc becomes smaller when T1(x) does not show much variation with σ0

and the minimum becomes less and less pronounced. In Fig. 2.3A we verify this.

In Fig. 2.3B we show the variation of T1(x) against D for fixed σ0 values. For very

large D the Gaussian profile quickly flattens out and the bacterial motion becomes

an isotropic diffusion. In this limit T1(x) becomes zero. For very small D values,

the limit for a static Gaussian profile is recovered and (as shown in our data in Fig.

2.1 main plot) T1(x) has a negative value that depends on σ0. Therefore, for a given

σ0, as D is varied, T1(x) starts from a negative value at small D and becomes 0 at

large D. Whether this variation is monotonic or not depends on the choice of σ0.

Our data in Fig. 2.3B show that for large σ0 the variation is monotonic but for small

σ0 a minimum is reached at a particular D, i.e. there is an optimum diffusivity of
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the nutrient when the search is most efficient. For our various choice of σ0 values

over a wide range (full dataset not presented here), we also notice that an optimum

diffusivity is observed whenever σ0 is fixed at a value smaller than σ∗, the optimum

width for the static concentration profile (see Fig. 2.1 main plot). For σ0 > σ∗, on

the other hand, T1(x) increases monotonically with D.

Above observation tentatively indicates that it may be possible to describe the re-

sults for the time-dependent nutrient concentration in terms of a static concentration

profile with an ‘effective width’ σe. For a given value of σ0 and D the width of c(x, t)

keeps increasing during bacterial motion—at the start of the motion the width is

σ0 and at the end of the first passage the average width is
√

σ2
0 + 4DT (x). Let us

assume that σe is some measure of the average or effective width experienced by the

bacterium during this process. Obviously, σe is a function of both σ0 and D—for a

fixed σ0 as D is varied, σe ≈ σ0 for very small D and as D becomes very large, so

does σe. In course of this variation, if σe crosses σ∗, then T1(x) shows a minimum

and if σ0 > σ∗ such that σe never reaches σ∗ (because σe can never fall below σ0),

then T1(x) shows a monotonic increase with D. Although for this case we do not

have any mathematical expression for σe in terms of σ0 and D, but the above picture

explains our numerical data well.

2.7 Conclusion

In this chapter, we have considered the chemotaxis motion of a bacterium in a medium

where the nutrient is also undergoing diffusion and its concentration profile is given

by a Gaussian whose width increases with time. To characterize the efficiency of

the chemotactic performance of E. coli bacterium, we have measured the mean first

passage time of the bacterium at the neighborhood of the Gaussian peak. In the limit

when the nutrient diffusion is slow compared to the bacterial motion, the bacterium

experiences an effectively static concentration profile, a Gaussian with a fixed width,

and in this regime we calculate the mean first passage time analytically, within a

coarse-grained formalism. We find that the mean first passage time shows a minimum

as a function of the width of the Gaussian, which means that the search process be-

comes most efficient at a certain optimum width. Our numerical simulation matches

well with the analytical result.
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For a time-dependent concentration profile, i.e. in the regime when the nutrient

diffusion occurs over a time-scale comparable to bacterial motion, we find that the

first passage time is a function of nutrient diffusivity D and the width σ0 of the

Gaussian at the onset of chemotaxis motion. When D is held fixed at a small value,

the mean first passage time shows a minimum against variation of σ0, as in the static

case. But for large D the minimum becomes less pronounced. As a function of D,

the mean first passage time shows a minimum if σ0 is held fixed at a small value.

But no such minimum is observed when σ0 is set at a large value.

We end this chapter with a short discussion on possible experimental verifications of

some of our results. Recently, E. coli chemotaxis has been studied in a microfluidic

channel whose width is comparable to the bacterial mean free path [16–18]. In

such a setup, the motion of the bacterium can be considered to be effectively one-

dimensional. It is possible to generate a Gaussian chemical concentration profile

using techniques of diffusive microfluidics [19]. The motion of the bacterium can

be tracked to measure its first passage properties. Our model predicts that for a

static Gaussian profile of width σ ∼ 50µm, wild-type E. coli have the shortest first

passage time. However, it can be experimentally challenging to verify our results for a

time-dependent nutrient concentration profile. Most common chemoattractants such

as aspartate and serine have diffusivity D ∼ 1000µm2/s , which is much larger than

bacterial diffusivity. As a result, the chemical diffuses very quickly in the medium, and

initially localized concentration quickly flattens out. Thus the bacterium experiences

a very weak concentration gradient. and the chemotactic correction T1 to its first

passage time may become too small for experimental detection.
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Chapter 3

Signaling noise in a homogeneous

environment

3.1 Introduction

Behavior of a cell is controlled by the intracellular biochemical reactions in its sig-

naling pathway. These reactions crucially depend on the expression levels of each

protein involved and any fluctuations in the numbers of protein molecules have im-

portant consequences on the cell performance [1, 2]. These fluctuations are also

expected, since inside a single cell, the number of protein molecules which take part

in the reactions, is often small [3] and can range between 10 molecules per cell to

1000 molecules per cell, depending on the type of the signaling protein [4]. How the

variability in protein numbers affects the cell behavior is an important question to

understand [5–8].

A model system for studying these effects of noisy environement inside of a cell on

the cellular behavior, is the chemotaxis pathway of E. coli bacteria. In absence of

any noise in the signaling pathway (Fig. 1.2) of the cell, the switching of rotational

bias of the flagellar motors is expected to be a Poisson process and consequently,

the duration of a particular run or tumble should follow an exponential distribution.

Many early experiments and theoretical models which involve measurement over a

bacterial population, indeed found exponential distribution [9, 10]. However, in [11]

the switching events of a single cell in an isotropic medium were monitored in exper-

iment and the residence time of the motors in the CCW bias was found to follow a

35
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power law distribution. It was argued that the noise present in the signalling net-

work of a single cell makes it possible to have large fluctuations in the CCW lifetimes

and consequently, the cell can execute really long runs with significant probability.

In [12] a theoretical model was considered where the CCW and CW bias states of

the motors were modelled as a two-level system whose energy levels depend on the

concentration of the motor protein CheY-P, and as the noise present in the network

causes this protein number to fluctuate, the energy levels also fluctuate with time.

It was explicitly shown that such fluctuations give rise to power law distribution for

the lifetime of the CCW state. Similar power laws have been obtained by considering

the fluctuations in CheR protein level in the pathway of non-stimulated cells [13, 14].

For a single bacterial motor, the time-series of switching events were experimentally

measured and for large CW bias, which corresponds to higher CheY-P level, and

hence smaller fluctuations, the CCW intervals show exponential distribution, while

for small CW bias, when fluctuations in CheY-P level are more significant, CCW

intervals show power law distribution [15, 16].

In this chapter, we will see the effect of this fluctuation present in the chemotactic

pathway on the behavior of a single cell E. coli bacterium in presence of a homoge-

neous nutrient environment. Our simulation results shows that as the noise increases

the runlength distribution of the bacterium will become power law. We shall also

calculate the CheY-P level distribution, which is important for the bacterial run-

tumble motion, analytically as a function of the methylation noise. From which we

shall calculate the average run-length of the bacterium , when there is a constant

background concentration. We found a good agreement with the analytics with the

simulation results. The CheY-P level distribution becomes very narrow if the noise

is very small but for very large noise distribution becomes wide.

In the next section, we introduce the model in details. In Sec 3.3 we show our

simulation results on the effect of methylation noise in a homogeneous nutrient con-

centration. In Sec 3.4 we discusses the analytical results in homogeneous medium.

Our conclusions for this chapter are presented in Sec 3.5.

3.2 Model description

In [17, 18] the chemotactic pathway was modelled in terms of three dynamical vari-

ables, the activity a(t) of the receptor complex, the methylation level m(t) and the
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CheY-P level yP (t). In [19] this description was modified by incorporating methyla-

tion noise. In this chapter, we use the same model as in [19].

The activity of a receptor complex is defined as the probability to find it in the active

state. The free energy difference between the active and inactive state is denoted as

ǫ(m, c0), which is a function of the methylation level m and the constant background

nutrient concentration c0. Then within quasi-equilibrium approximation, activity can

be written as

a =
1

1 + exp[Nǫ(m, c0)]
, (3.1)

where N = 6 is the number of chemo-receptors participating in the signaling pathway.

The free energy ǫ(m, c0) can be written as a sum of contributions coming from m and

c0 as follows [20, 21]:

ǫ(m, c0) = α(m0 −m) + f(c0) (3.2)

where, f(c0) = − log

(

1 + c0/KA

1 + c0/KI

)

. In Eq. 3.2 KA = 3mM and KI = 18.2µM

[18, 19] set the range of concentration that the cell is able to sense. The cell is

insensitive to chemical concentration outside this range. The other parameter values

are α = 1.7, m0 = 1 [18, 19].

The methylation level of the receptor goes up under the action of the enzyme CheR

(and goes down due to CheB-P). The concentration of CheR that is bound to the

receptor fluctuates with time due to low abundance of the enzyme [22] and also

due to binding-unbinding dynamics between free and bound state enzyme molecules

[13, 14, 23, 24]. This gives rise to fluctuations in the methylation level of the receptor.

The resulting dynamics governing receptor methylation and demethylation is given

by the stochastic equation [19]

dm

dt
= kR(1− a)− kBa+ η(t). (3.3)

Here, kR and kB denote the methylation and demethylation rate constants, re-

spectively [18] and η(t) is the stochastic noise with properties < η >= 0 and

< η(t)η(t′) >= λ(kR(1 − ā) + kBā)δ(t − t′), where ā = 1/2 is the average activ-

ity level in absence of any noise. The strength of the noise which determines the

variance of methylation, depends on various biochemical rate constants and total

concentration level of proteins like CheA, CheY and CheZ [25]. While the rate pa-

rameters are generally expected to be constant for a given biochemical pathway, the

total concentration level of different proteins can vary from cell to cell due to noisy
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gene expressions. Within our simple model, we vary the noise strength by varying the

dimensionless parameter λ. We consider only small values of λ and within our range

of variation, the fluctuation (measured as the standard deviation) in m(t) remains

significantly smaller than the average methylation value. The rate parameters kR and

kB are significantly smaller than all other rates which characterize different reactions

in the biochemical pathway. This makes the methylation fluctuation a slow process

and hence the noise η(t) cannot be integrated out. In our simulation, we have used

kR = kB = 0.015s−1 [19, 26], which gives < η(t)η(t′) >= λkRδ(t − t′). Our main

results remain unaffected even when kR and kB have small but different values.

Fluctuations in methylation level will also cause fluctuations in activity which in turn

affects the phosphorylation of CheY proteins. In the phosphorylated state, CheY-P

proteins bind to the flagellar motors and cause the cell to tumble. Denoting the

fraction of phosphorylated CheY proteins as yP , we can write [19]

dyP
dt

= kY a(1− yP )− kZyP , (3.4)

where the phosphorylation and dephosphorylation rates of CheY molecules have the

values kY = 1.7s−1 and kZ = 2s−1 which are much higher than the rates for methy-

lation and demethylation [17, 19]. This is why no additive white noise in Eq. 3.4 has

been included in the model, since it is expected that such noise would give rise to

fluctuations much faster than that induced by methylation noise. The tumbling rate

ω(yP ) is a sigmoidal function of yP

ω(yP ) = ΩyHP (3.5)

with H = 10 and Ω = 282250s−1 [19, 27]. The value of Ω was estimated in [19] using

the criterion that in an adapted state, the flagellar motors have a CW bias of 25%.

Although we use the same Ω value, in our simulation in one dimension, we consider

instantaneous tumbling, i.e. the cell does not spend a finite time in the tumbling

state, but immediately after tumbling it starts running in a new direction. This is

justified since the fraction of time spent in a CW bias state is negligible compared to

that in CCW state. However, we have also checked that including a finite tumbling

duration does not affect our conclusions.

In this chapter, we consider motion of the bacterial cell in one dimension. While one

dimensional case is simpler to study and also relevant in view of recent experiments

[28, 29] where bacterial chemotaxis has been studied in narrow microfluidic channel
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inside which motion of the cell can be effectively considered to be one dimensional.

In higher dimensions the rotational diffusion will play a crucial role to affect the run

duration of the bacterium. But for homogeneous nutrient environment, since c0 does

not depend on the the position of the bacterium so apart from the magnitude of the

run duration all our results will not depend on the dimension and hence we do not

show these result in two or higher dimension.

To perform simulations in one dimension, we consider a one dimensional box of length

L, at the two ends of which there are reflecting boundary walls. In a time-step dt,

the cell moves a distance vdt where v is the run speed. At the end of each step, the

tumbling probability ω(yP )dt is calculated and if a tumble does take place, the sign

of v is reversed with probability q. In each time-step the activity, methylation and

CheY-P levels are updated according to Eqs. 3.1, 3.3 and 3.4. Throughout we have

used L = 1000µm, v = 10µm/s, dt = 0.01s. To check for finite size effects we have

also considered larger L and smaller dt values and found that our conclusions remain

unaffected.

3.3 Simulation results of the run-length and CheY-

P level distribution in a homogeneous nutrient

environment

We study the motion of a single cell in presence of a homogeneous nutrient concen-

tration in the medium. Even in the absence of any concentration gradient of the

nutrient, the effect of signaling noise is strongly felt. A qualitative change in the run-

length distribution is observed as the noise strength is varied. When noise strength

is zero, in a background of constant nutrient concentration, the activity level, methy-

lation level and CheY-P level do not fluctuate and stay constant at their respective

adapted values. The tumbling rate in Eq. 3.5 then also takes a constant value and

the bacterial motion consists of run and tumble modes with constant switching rates.

The run-length distribution in that case is expected to be exponential. Over a length

scale much larger than the average run-length, the motion of the cell can be described

by a diffusion process.

On the other hand, when the noise strength is high, then methylation level in Eq.

3.3 shows large fluctuations, which in turn induces fluctuations in the activity and
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in CheY-P level. The tumbling rate, which is a function of CheY-P concentration

also fluctuates with time. For large noise, the run-length distribution is known to

decay like a power law with an exponent ≃ 2.2 [11] and the motion of the cell can

be described by a Lévy walk [14]. A power law decay indicates the possibility of

observing long runs in the system [11] and an exponent 2.2 implies that although

average run-length remains finite, the variance of the distribution diverges. The

mean-squared displacement of the cell shows super-diffusive behavior in this limit.

Within our model also, we verify the crossover of run-length distribution from an

exponential to a power law with increasing noise strength in Fig. 3.1. Note that in

our simulations we consider a finite system. This brings about an exponential cut-off

in the tail of the run-length distribution which in turn restores diffusive behavior in

the long time limit.
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Figure 3.1: Distribution of the run duration for different signaling noise.
The probability P (τ0) to observe a run duration τ0 for different noise strengths λ,
in presence of a homogeneous nutrient concentration. For small λ, we find P (τ0)
has an exponential form, but for large λ it is a power law with exponent 2.1± 0.1,
close to experimental observation [11]. The thin line shows a power law function
with power 2.1. All other simulation parameters are as specified in Sec.3.2.

The crossover from exponential to power law shown in Fig. 3.1 happens due to fluc-

tuations present in the CheY-P level, which directly controls the motor bias [12]. To

gain a deeper insight into this noise induced fluctuations, we measure the distribu-

tion of CheY-P concentration at the time of tumbling. Our simulation data in Fig.

3.2 shows that the CheY-P concentration follows a unimodal distribution. As noise

increases, the distribution gets wider, as expected. Interestingly, the peak of the dis-

tribution shifts towards right with increasing noise, and the distribution develops a
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long tail for small values of CheY-P concentration. In the next section, we calculate

calculate the distribution analytically to explain these features.
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Figure 3.2: CheY-P level statistics of the bacterial biochemical pathway.
The probability distribution Ptum(yP ) for the fraction yP of phosphorylated CheY
molecules for a homogeneous nutrient concentration c(x) = c0 for different noise
strengths. With increasing noise strength, Ptum(yP ) peak shifts rightward and
width of the distribution increases. The dashed lines show (binned) simulation
data and the continuous lines correspond to analytical calculation, which shows
good agreement with simulation. Inset shows the left tail region of the distribution
on a zoomed scale. We find that as noise increases, the tail becomes longer. The
simulation parameters are as in Fig. 3.1.

3.4 Analytical calculation of the CheY-P level dis-

tribution and average run duration of the bac-

terium in a homogeneous concentration

The fluctuation in the methylation level can be expressed in terms of the following

stochastic differential equation by inserting Eq. 3.1 in Eq. 3.3[7]

dm = kR
c0e

Nα(m0−m) − 1

c0eNα(m0−m) + 1
dt +

√

kRλdW (t), (3.6)

where c0 is the uniform nutrient concentration in the medium and dW (t) is a stochas-

tic variable with uni-variate normal distribution. Using the expression of activity in
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Eq. 3.1 and applying the Ito calculus we can have

da = [kR
c0e

Nα(m0−m) − 1

c0eNα(m0−m) + 1

∂a

∂m
+
λkR
2

∂2a

∂m2
]dt +

√

λkr
∂a

∂m
dW (t)

= kRNαa(1− a)(1− 2a)(1 +
Nαλ

2
)dt+

√

kRλNαa(1− a)dW (t) (3.7)

Let F (a, t) denote the probability to find the cell with activity a at time t. From Eq.

7.1 we can construct the Fokker Planck equation for F (a, t) which has the form

∂F (a, t)

∂t
= − ∂

∂a
[kRNαa(1−a)(1−2a)(1+

Nαλ

2
)F (a, t)]+

kRλ

2

∂2

∂a2
[N2α2a2(1−a)2F (a, t)].

(3.8)

In the steady state, the time-derivative on the left hand side vanishes and by making

the transformation a = (1 + u)/2 and F (a) = [(1 − u2)/4]κ/2−1G(a), with κ =

2/(Nαλ), the above equation gets reduced to associated Legendre equation

(1− u2)
d2G

du2
− 2u

dG

du
+ [κ(κ+ 1)− κ2

1− u2
]G = 0. (3.9)

The general solution of this equation can be written as

F (a) =

[

1− (2a− 1)2

4

]κ/2−1

[A1P
κ
κ (2a− 1) + A2Q

κ
κ(2a− 1)] (3.10)

where P κ
κ and Qκ

κ are associated Legendre polynomial of first and second kind, respec-

tively. The constants A1 and A2 can be determined from fitting with the numerical

data.

If we use the reflecting boundary conditions of the activity a at a = 0 and a = 1,

so that the activity always lies within 0 and 1, one can calculate easily calculate the

distribution function from Eq. 3.8. The corresponding reflecting boundary conditions

for the F (a) are (i)∂F (a)
∂a

|a=0 = 0 and (ii)∂F (a)
∂a

|a=1 = 0. By applying these conditions

in Eq. 3.8 one can get a first order differential equation at steady state for F (a).

From which one can get finally the normalized distribution

F (a) =
[a(1− a)]κ−1

B(κ, κ)
, (3.11)

where B(κ, κ) =
∫∞
0
(x(1 − x))κ−1dx = Γ[κ]2

Γ[2κ]
. The distribution function for CheY-

P follows from here, by noting that in steady state CheY-P concentration can be
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assumed to be equal to
a

a+ kZ/kY
. Here, we have used an assumption that the

fluctuations present in activity a are slow enough, such that for each level of activ-

ity, CheY-P level reaches a steady state. Then the probability that the fraction of

phosphorylated CheY proteins has a given value yP is

F1(yP ) = F (a)
da

dy
=
kY
kZ

(a+
kZ
kY

)2F (a) (3.12)

The probability distribution for CheY-P concentration at tumble can simply be cal-

culated as Ptum(yP ) = ω(yP )F1(yP ). In Fig. 3.2 we compare our analytical results

with simulations and find good agreement. As noise strength increases, the peak of

the distribution shifts towards higher CheY-P level and the distribution also devel-

ops a long tail, as shown in the inset. We discuss in Chapter 4 that these facts play

important role in understanding the chemotactic efficiency of the cell in presence of

nutrient concentration gradient.

Although large noise increases the probability of very long runs, the average run-

duration still decreases with noise, as shown in our data in Fig. 3.3. We will in the

next chapter that this has important consequence for the chemotactic response of the

cell. The first moment of the distribution Ptum(yP ) gives the average CheY-P level

at tumble from which average tumbling rate can be calculated using Eq. 3.5, and the

average run-duration can be estimated as the inverse of average tumbling rate,

τ =
1

∫ 1

0
Ptum(yP )dyP

=

[

(

kz
kY

)−H
Γ[2κ]Γ[κ+H ]

Γ[κ]
2F1[H,H + κ;H + 2κ;−kY

kZ
]

]−1

, (3.13)

where, 2F1[H,H+κ;H+2κ;−kY
kZ
] is the Gauss Hyper-geometric function. Note that

in presence of a large signaling noise, the tumbling events are not Poissonian and

replacing average run duration by inverse of average tumbling rate is an approxima-

tion. However this gives good agreement with simulation results as shown in Fig.

3.3.
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Figure 3.3: Average run duration for different signaling noise. The aver-
age run duration τ decreases with λ. The discrete points are for simulation and the
continuous line shows analytical result from Eq. 3.13. We find good agreement.
Here, we have used one dimensional system and a homogeneous nutrient concen-
tration with a constant background concentration c(x) = c0 = 200µM . All other
simulation parameters are as in Fig. 3.1.

3.5 Conclusion

In this chapter we have measured the run-length distribution in a homogeneous

medium for different noise strength. We found that as the noise increases the distri-

bution becomes power law instead of exponential distribution. These results suggest

that as the internal noise increases bacteria can have long runs. These long runs

will be beneficial for the bacteria when there will be nutrient concentration gradient

present in the system. In chapter 4 we will see that this noise would actually in-

crease the chemotactic performance of the bacteria in presence of spatially varying

nutrient profile. In harsh environment where the nutrient is diffusing and decaying

with time this long runs would be important for the bacteria to reach to the nutrient

rich region quickly(see chapter 5). We have also measured the CheY-P protein level

distribution both numerically and analytically. We found a good agreement. Finally

we have measured the average run-duration, which decreases as the noise strength

increases. This result will be important when we will study the effect of the noise on

the chemotactic performance of the bacteria in presence of spatially varying nutrient

profile in chapters 4 and 5.
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Chapter 4

Effects of intracellular environment

on the chemotactic performance of

E. coli in a spatially varying

nutrient profile

4.1 Introduction

In the previous chapter, we have discussed the behavior of a single cell bacterium

in presence of a homogeneous nutrient concentration, where we have seen that the

tumbling rate and run duration get strongly affected due to noise. It is expected

therefore, that in presence of a concentration gradient of the chemo-attractant, the

chemotactic motion of the cell will also be seriously altered due to noise. In this chap-

ter, we focus on what are the consequences of this on the chemotactic performance

of the cell. We measure various different quantities which characterize different as-

pects of the chemotactic efficiency in presence of a static nutrient profile and study

their properties for different strengths of the signaling noise in both one and two

dimensions. The first quantity that we are interested is the chemotactic drift velocity

which is defined as the steady state average velocity with which the cell climbs up the

chemical concentration gradient, and larger values of drift velocity clearly indicates

a better performance. The nutrient concentration, averaged over the steady state

distribution of the cell position, measures how effectively the cells are localized in

the nutrient-rich regions. This quantity is defined as localization and it takes a high
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value for a given concentration profile of the nutrient when in the long time limit

most of the cells are present in the regions which contains maximum nutrient. High

values of localization and drift velocity ensures a good chemotactic performance in

the long time limit. We present our results on steady state chemotactic response

characterized by localization and chemotactic drift velocity in sections 4.1 and 4.3

respectively. In section 4.4 we present our results on the first passage time of the cell

that measures how quickly the cell manages to find the nutrient-rich region in the

medium for the first time.

To measure the different response functions in presence of static nutrient concen-

tration we use the same chemotactic model discussed in section 3.2. But here we

consider the nutrient profile is a function of the position. The equation Eq. 3.1 in

Sec. 3.2 now will be of the form

a =
1

1 + exp(Nǫ(m, c(x)))
, (4.1)

where c(x) is the spatially varying nutrient profile instead of homogeneous nutrient

profile c0. We have used linear and Gaussian concentration profile to see the chemo-

tactic behavior of the single cell bacterium. As the cell position x changes with

time, the nutrient concentration c(x) experienced by the cell also changes. The other

equation remains same as in Sec. 3.2.

We consider motion of the bacterial cell in one and two dimensions. While one

dimensional case is simpler to study and also relevant in view of recent experiments

[1, 2] where bacterial chemotaxis has been studied in narrow microfluidic channel

inside which motion of the cell can be effectively considered to be one dimensional,

we also verify that all our main results remain valid in two dimensions as well. To

perform simulations in one dimension we use same method as in Sec. 3.2. For

simulations in two dimensions, we consider an L×L box with reflecting boundaries in

the x and y directions. The nutrient concentration gradient is assumed to be present

only along the x direction, but the cell moves on the xy plane with velocity v, whose

magnitude remains fixed but direction changes abruptly after each tumble. In this

case we include finite tumble duration and rotational diffusion to make our model

more realistic. The average tumble duration is taken to be τT = 0.1s and rotational

diffusivity Dθ = 0.062µm2/s [3–5] allows gradual bending of the cell trajectory during

a run. All other parameters remain same as in one dimensional case.
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4.2 Steady state distribution of cell position

Let Pλ(x) be the steady state probability to find the cell in one dimension at position

x, for a given noise strength λ. A good chemotactic performance implies strong

localization of the cell in the nutrient-rich neighborhood. This means that Pλ(x)

should be large whenever nutrient concentration c(x) is large and Pλ(x) should take

small value for those x where nutrient is sparse, c(x) is close to zero. A quantitative

way to characterize this is to measure the average nutrient concentration experienced

by the cell population in steady state, i.e. 〈C〉 =
∫ L

0
dxc(x)Pλ(x). Note that the

integrand has a large value only when both c(x) and Pλ(x) are large, indicating

strong localization in favorable region. 〈C〉 − c0 indicates the difference between

the average nutrient concentration captured by the cell and the background nutrient

concentration.
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Figure 4.1: Localization shows a peak as a function of noise strength.
(A): 〈C〉−c0 vs the noise strength λ with c(x) = c0(1+x/x0) with x0 = 20000µm.
The optimum noise strength λ∗ ≃ 0.005 in this case. Inset shows the plot for λ∗

vs x0. We find no strong dependence of λ∗ on x0. (B): The variation of 〈C〉 − c0

with λ for c(x) = c0(1 + 1√
2πσ2

exp[− (x−x̄)2

2σ2 ]). This case also shows similar value

for λ∗. The inset shows the plot of λ∗ vs σ. (C). 〈C〉 − c0 vs the noise strength λ
in two dimension with c(x) = c0(1 + x/x0) with x0 = 20000µm. The localization
shows a peak at the same value as in (A) and (B). The inset shows the variation
of λ∗ with the x0. For two dimension case also we find no strong dependence of
the optimum noise strength on the gradient present in the system. We have used
c0 = 200µM , x0 = 104µm, σ = 100µm, x̄ = 500µm.

We find that 〈C〉 − c0 shows a non-monotonic variation with noise strength λ: while

for very small and very large λ values 〈C〉 is low, for intermediate noise level, 〈C〉
reaches a peak. This means that there is an optimum level of the signaling noise

when the chemotactic performance, as measured by 〈C〉, is at its best. In Fig. 4.1A,

we present the data for the linear concentration profile and find that best chemotaxis

is observed for λ = λ∗ ≃ 0.005. The value of λ∗ does not seem to depend strongly on

the concentration gradient (see inset of Fig. 4.1A). In Fig. 4.1B we show the data for
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a Gaussian form of c(x) = c0(1 +
1√
2πσ2

exp[− (x−x̄)2

2σ2 ]) which also shows a comparable

value of λ∗. In Fig. 4.1C we present our results for the two dimensional case with a

linear concentration profile c(x) and find similar behavior.

Although localization does reach a peak at λ∗, the peak is not so pronounced. For

a linear c(x), our choice of large x0 ensures a weak gradient and this yields a linear

Pλ(x). The slope of this distribution can be used as another characteristic to measure

the chemotactic performance. As expected, this slope in one dimension also shows

a peak at the same λ∗ value in Fig. 4.2. It is clear that a peak in slope implies a

peak in localization, we find that the peak in slope is much more pronounced than

the localization peak.
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Figure 4.2: Slope of Pλ(x) shows a peak as a function of noise strength. The
optimum noise strength λ∗ is close to 0.005. Here, we have scaled the slope by a
factor of 108. The simulation parameters are as in Fig. 4.1.

4.3 Chemotactic drift velocity in steady state

The signaling network inside the cell is such that the runs in the direction of increasing

concentration gradient of the chemo-attractant are extended and those in the opposite

direction are shortened. This gives rise to an overall drift motion up the concentration

gradient [6]. Even in the absence of any methylation noise, the inherent stochasticity

in the run-tumble motion of the cell gives rise to an effective diffusion in the long

time limit which tends to homogenize the cell population. It is the drift motion

which helps the system sustain the spatial variation in the steady state population

density [7, 8]. In the presence of methylation noise, the cell trajectories may show

super-diffusive behavior, which would again flatten out Pλ(x), had there been no

drift motion. Therefore, chemotactic drift is crucial for chemotactic response. A
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large value of the chemotactic drift velocity means that the cell can quickly climb

up the concentration gradient. It is certainly an important criterion for chemotactic

performance.

We measure the chemotactic drift velocity of the cell in one dimension in presence of

a linear concentration profile of the nutrient. Before presenting our simulation data,

we include a brief discussion on how we measure the drift velocity from the run-and-

tumble trajectory of the cell. Note first that the existence of a non-zero drift velocity

means that the average run duration in the rightward direction (up the gradient) is

different from that in the leftward direction (down the gradient). We measure this

difference at an arbitrary position x where the cell tumbles and a new run begins,

and finally average over all x values. Let NR(x) and NL(x) be the total number

of rightward and leftward runs starting at x, within an observation time window

tobs. Let dR(x) and dL(x) be the total durations of these rightward and leftward

runs. The average run duration (in either direction) starting at x is then given by

τ(x) =
dR(x) + dL(x)

NR(x) +NL(x)
. Note that τ(x) is in general different from [τR(x)+ τL(x)]/2,

where τR(x) is the average duration of a rightward run starting at x and is equal to

dR(x)/NR(x). Similarly, τL(x) = dL(x)/NL(x). The difference stems from the fact

that NR(x) and NL(x) are not equal in general.

The probability that a run starts from the position x is Qtum(x) = N−1[NR(x) +

NL(x)] with the normalization constant N =
∫

dx′[NR(x
′) + NL(x

′)]. The average

displacement in a run can then be calculated as ∆ =
∫

dxQtum(x)v
dR(x)− dL(x)

NR(x) +NL(x)
.

The chemotactic drift velocity is obtained on dividing the average displacement in a

run by the average run duration τ =
∫

dxτ(x)Qtum(x). Thus the final expression for

chemotactic drift velocity [4] is

V =
∆

τ
=
v
∫

dx[dR(x)− dL(x)]
∫

dx′[dR(x′) + dL(x′)]
(4.2)

In Fig. 4.3 we plot V for different noise strengths λ and find that V shows a peak

as a function of λ. The position of the peak does not match exactly with what we

observed for localization 〈C〉. The chemotactic drift velocity reaches a peak value

for an optimum noise strength λo ≃ 0.01, somewhat higher than the optimum noise

strength λ∗ for 〈C〉. To explain this difference, we separately plot τ and ∆ as a

function of noise in Fig. 4.4. We find that τ decreases monotonically with noise, as

in a homogeneous nutrient environment (also see Fig. 3.1B). However, ∆ shows a

peak at a noise value, which again matches with λ∗. Although the non-monotonic
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Figure 4.3: Chemotactic drift velocity shows a peak as a function of the
noise strength. Left and right panels show the data for one dimensional and
two dimensional systems, respectively. In both cases, the optimal noise strength
λo is found to be higher than that for localization data in Fig. 4.1. We have used
c(x) = c0(1 + x/x0) here and all simulation parameters are as in Fig. 4.1.

variation of V with noise arises due to that of ∆, we can also see why the peak of

V occurs at a higher noise value. Using V =
∆

τ
, at the peak position λo one must

satisfy the condition that τ∆′ − ∆τ ′ = 0, where the primes denote derivative with

respect to λ. Since τ ′ < 0 for all λ, it immediately follows that ∆′ < 0 at λ = λo.

In other words, ∆ decreases with noise at λ = λo, which means it has reached its

peak at a smaller λ value. We verify all these results in two dimensions as well.

Here, the nutrient concentration gradient is applied along x-direction and hence the

chemotactic drift is also present only in x-direction. The motion of the cell along

y-direction is expected to be purely diffusive in this case. We present our results for

V , ∆ and τ as a function of λ in Figs. 4.3B, 4.4C and 4.4D, respectively, for the two

dimensional case.

The fact that the peak position of ∆ matches with that of 〈C〉 indicates that there is
indeed a unique noise strength at which the chemotactic performance of the cell is at

its best. Moreover, this also shows that the chemotactic response is drift mediated

and to understand the origin of optimality, we need to examine the noise dependence

of ∆ in detail. We discuss this in the following subsection. For the sake of simplicity,

we limit our discussion to the one dimensional case here, but our arguments can be

generalized to the two dimensional case as well.

4.3.1 Explanation of optimal noise strength

First let us consider the case of very low methylation noise. In this limit, the only

source of fluctuations in activity, methylation or CheY-P level is the change in the
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Figure 4.4: The net displacement ∆ in a run and the average run-
duration τ as a function of noise strength. ∆ shows a peak at an optimum
noise value close to λ∗, and τ decreases monotonically with noise. The upper panel
shows data for one dimension and the lower panel shows data for two dimensions.
All the simulation parameters for one and two dimension are same as in Fig. 4.3.

position of the cell. As the cell moves rightward, the concentration c(x) of the chemo-

attractant increases, and the free energy due to ligand concentration increases, caus-

ing the activity to decrease. Similarly, in a leftward run activity increases when

the methylation noise is low. This in turn, causes CheY-P level to go down (up)

in a rightward (leftward) run. In our simulation, we measure the average change in

CheY-P level in between two tumbles, when the intervening run is directed rightward

(leftward). We plot this quantity as a function of yP , which is the value of the CheY-

P concentration at the time of the first tumble, i.e. at the beginning of the run. Our

data in Fig. 4.5A indeed show that for small noise strength λ, rightward runs bring

down the CheY-P level and leftward runs push the level up [4].

However, as λ increases, the change in activity is not solely controlled by the po-

sitional change of the cell, but also by the methylation level fluctuations and the

feedback it produces on the reaction network. Moreover, our analytical calculation

for the homogeneous environment shows that with increasing λ, the range of varia-

tion of activity increases and its mean value (measured at a tumble) also increases.

When activity becomes too low (high), the methylation level increases, which in turn
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Figure 4.5: Average change in CheY-P level during a run, as a function
of the initial CheY-P level, at the start of the run. yP denotes the frac-
tion of phosphorylated CheY molecules and δyP denotes its average change. The
circles (squares) show the data for leftward (rightward) runs. (A): In absence of
methylation noise, average CheY-P level always goes down (up) during a rightward
(leftward) run. (B): For intermediate noise strength, change in CheY-P becomes
positive (negative) during a rightward (leftward) run for small (large) values of
CheY-P concentration. (C): As noise increases, the difference between the two
curves become smaller. These data are for the one dimensional system and the
simulation parameters are same as in Fig. 4.3A.

causes the activity to increase (decrease). The feedback effect becomes stronger, as

the activity falls further away from its average value. For large λ, when the activity

varies over an wider range, the feedback effect is thus more prominent and can eas-

ily override the change in activity due to change in cell position. This means that

although in a rightward run, the activity is expected to decrease for low λ, when λ

becomes high, activity can also increase during a rightward run, especially when its

value at the start of the run is sufficiently small. Similarly, in a leftward run activity

may decrease when its value is high enough. In terms of CheY-P level, this means

that during a rightward (leftward) run the CheY-P level yP can increase (decrease)

when yP has small (large) values. We verify this from our simulation data presented

in Fig. 4.5B.

With the above observations on the effect of noise strength on the variation of activity

or CheY-P level during a run, let us now turn our attention to the quantity ∆, the net

displacement of the cell in a run. In the previous subsection, we had measured ∆ in

terms of position dependent quantities like dR(x), NR(x), etc. and then averaged over

all positions. Alternatively, one can measure these quantities as a function of CheY-

P concentration yP and do a weighted average with Ptum(yP ) over different CheY-P

levels. This approach may be particularly instructive since CheY-P directly controls

the tumbling rate of the cell. For this purpose, we define ∆(yP ) =
dR(yP )− dL(yP )

NR(yP ) +NL(yP )
,

where NR(yP ) (NL(yP )) denotes number of rightward (leftward) runs starting with
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Figure 4.6: Net displacement during a run for different noise strengths.
yP denotes the fraction of phosphorylated CheY molecules, at the start of the run,
and ∆(yP ) denotes the average displacement in that run. The left panel shows
the complete range of yP values, while the right panel zooms onto the large yP
values. (A): ∆(yP ) vanishes for very small or very large yP values and attains
a large negative peak and small positive peak for intermediate yP values. The
position and height of the peaks depend strongly on noise. (B): The positive peak
of ∆(yP ) shown on a zoomed scale. While the position of the peak shifts towards
left as noise increases, the height of the peak clearly shows non-monotonic behavior
with noise, the highest peak being observed close to the optimal noise λ∗. These
data are for one dimension and all simulation parameters are same as in Fig. 4.3A.

CheY-P concentration value yP and dR(yP ) (dL(yP )) denotes the total rightward

(leftward) displacement of the cell position in these runs. Clearly, weighted average

of ∆(yP ) with the distribution Ptum(yP ) over different yP values gives back the same

∆ as shown in Fig. 4.4A. We plot ∆(yP ) as a function of yP for different noise

strengths in Fig. 4.6.

For low noise, our data in Fig. 4.6 show that ∆(yP ) is negative for small yP , increases

to a positive value as yP increases, then reaches a peak with yP and then decays to

zero for large yP . Note that a rightward run starting with a given yP must be

preceded by a leftward run which terminates at the same yP . This leftward run must

have originated from a lower yP value since for low noise, yP value can only increase

during a leftward run. This event becomes particularly unlikely when yP values are

already small, near the left-tail of the distribution Ptum(yP ). Therefore, for small

yP values, NR(yP ) < NL(yP ) and as a result, dR(yp) < dL(yp), which makes ∆(yP )

negative. As yP increases and comes out of the tail region, NR(yP ) gradually increases

and overtakes NL(yP ), and ∆(yP ) becomes positive, as expected for a system with

positive drift velocity. However, as yP becomes very large, run durations become

rather small and while NR(y) remains above NL(y), their individual values start
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Figure 4.7: Variation of NR(yP )−NL(yP ) against yP for different noise strengths.
(A): As yP increases, NR(yP )−NL(yP ) starts from zero, reaches a negative peak,
followed by a positive peak, and again becomes zero for very large yP values. The
negative values observed at small yP show that in this range, the cell motion is bi-
ased towards decreasing nutrient concentration. (B): Similar behavior is observed
at large λ, but the point of zero-crossing shifts towards smaller yP values. All
simulation parameters are same as in Fig. 4.6

decreasing for large yP . Thus ∆(yP ) approaches zero for large yP , and must show a

peak at intermediate yP value. We have also verified that the difference inNR(yP ) and

NL(yP ) vanishes even when yP becomes very small in Fig. 4.7, since both NR(yP ) and

NL(yP ) become zero here. When we average ∆(yP ) over the distribution Ptum(yP ) to

calculate ∆, small yP values give negative contribution and reduces ∆. Note however,

that negative ∆(yP ) values are near the left tail of Ptum(yP ) and hence occur with

low probability. Thus overall drift velocity still remains positive.

As noise increases, the distribution Ptum(yP ) becomes wider and Fig. 3.2 (inset)

also shows that the left tail becomes much longer than the right tail. Moreover, our

argument above and data in Fig. 4.5B show that for very small yP both rightward and

leftward runs raise the yP level, but leftward runs do so by a larger magnitude. As a

result, a leftward run that precedes a rightward run and that terminates at a small yP

must have to start from an even smaller yP , which has a low probability associated

with it. Therefore, even when λ is relatively large, we still find NR(yP ) < NL(yP ),

but this happens at a much smaller yP value, than what we have seen for low λ

in Fig. 4.7. This means the zero-crossing of ∆(yP ) and its positive peak are both

shifted towards smaller yP . In other words, starting from a large value, as yP is

decreased, ∆(yP ) keeps increasing and this trend continues till a much smaller yP

value, after which it finally starts declining again. Averaging over such a curve yields
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a higher value of ∆ than what was observed for small noise. This explains why ∆

increases as noise increases. However, when noise becomes too large, the cell cannot

distinguish between rightward and leftward runs. The change in activity or yP in

a run is completely controlled by methylation level fluctuations now, and ligand

concentration plays an insignificant role. Our data in Fig. 4.5C also shows that the

two curves showing change in CheY-P level in a rightward and leftward run come

closer as λ increases. This again reduces the value of ∆.

Above explanation and the accompanying data are presented for one dimensional

motion of the cell with instantaneous tumbles. However, these arguments can be

generalized for two dimensional case as well to explain our observation of optimal

noise in that case.

4.4 Search time for favorable region

In this section, we discuss how quickly a cell manages to find for the first time, the

region with higher nutrient concentration. First passage time is the suitable measure

in this case [9]. Clearly, this is a response function measured away from the steady

state. We measure the first passage time for different strengths of signaling noise in

one and two dimensions.

In one dimension, we measure T (xi, xf), defined as the time taken for a cell to reach a

position xf for the first time, starting from an initial position xi, where c(xf ) > c(xi).

A small value of first passage time indicates an efficient search strategy. In Fig. 4.8A

we plot the mean first passage time, which is averaged over different trajectories of the

cell. We consider two different types of nutrient concentration profile: a linearly vary-

ing c(x) = c0(1+x/x0) and a Gaussian c(x) = c0

(

1 +
1√
2πσ2

exp

[

−(x− x̄)2

2σ2

])

. For

comparison, we also show the data for a homogeneous concentration profile c(x) = c0

in the same plot. Our data in Fig. 4.8A show that in all cases the mean first pas-

sage time decreases as the noise strength increases. Also, for large noise values, the

curves for the three different concentration profiles merge. In Fig. 4.8B we present

data for two dimensions for homogeneous and linear c(x). In this case, since c(x) is

independent of y-coordinate, the initial position of the cell has been taken anywhere

on the line parallel to y-axis, with x-coordinate xi = 300µm. Similarly, the target

position is another parallel line with xf = 490µm. We find similar behavior as in the
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one dimensional case here, although the values of the first passage time are larger in

two dimensions.
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Figure 4.8: Mean first passage time decreases as a function of noise
strength. (A) shows the data in one dimension and (B) shows the data in two
dimensions. Square symbols correspond to a homogeneous concentration profile of
the nutrient, c(x) = c0, circles correspond to a linear concentration form c(x) =
c0(1 + x/x0) in both panels. The triangles in left panel correspond to a Gaussian

c(x) = c0(1 + 1√
2πσ2

exp[− (x−x̄)2

2σ2 ]). We have used c0 = 200µM , x0 = 104µm,

σ = 100µm, x̄ = 500µm. The mean first passage time T (xi, xf ) has been measured
from an initial position xi = 300µm to a final target position at xf = 490µm.

As follows from our data in Fig. 3.1, for large noise, the long runs become more

probable, which clearly help the cell to explore the medium quickly. As a result,

it becomes possible for the cell to cover the distance to the target in a relatively

small number of long runs. On the other hand, when the noise is small, run length

distribution falls off exponentially and probability to observe long runs is negligible.

In this case, the cell tumbles rather often and before it hits the target a large number

of tumbles and hence directional changes have been executed. In this limit, the

mean first passage time is longer and can actually be calculated analytically in one

dimension [9].

From our data in Fig. 4.8 we therefore conclude that as noise increases, the search

process becomes quicker. However, a very large noise brings about wild fluctuations

of the protein levels and that is bound to affect the chemotactic performance in an

adverse way. Long runs may be good for the cell to explore the whole environment

quickly, but a good chemotactic performance in the long time limit actually demands

that the cell is able to distinguish between runs up and down the concentration gra-

dient. A strong fluctuation in the methylation level causes that distinction to become

blurred since the change in activity in Eq. 3.1 is now dominantly controlled by the
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methylation level changes, rather than local change in the ligand concentration. In-

deed our data in Sec. 4.2 and 4.3 show that the steady state chemotactic performance

becomes poor when the noise is very large.

4.5 Conclusion

In this chapter, we have studied the effect of methylation noise on the chemotactic

performance of a single E. coli cell. We find that in the case of a nutrient environment

that has spatial variation but no explicit time dependence, i.e., a static concentra-

tion nutrient profile, the chemotactic performance of the cell, measured in terms of

localization and chemotactic drift velocity, shows a non-monotonic variation with the

noise strength. There is an optimum noise strength where the best performance is

observed. We explain this result from CheY-P level fluctuations for cell motion up

and down the concentration gradient of the nutrient. We argue that for low values

of CheY-P concentration, the cell is more likely to move down the nutrient gradi-

ent which is detrimental to its chemotactic performance. The threshold value of

CheY-P level below which this happens moves up as the methylation noise strength

is decreased. When we average over the CheY-P level statistics, for very low noise

strength, the chemotactic performance is thus weaker. On the other hand, when

the signaling noise is very large, the cell is unable to distinguish between runs up

and down the gradient and its motion is totally controlled by stochastic methylation

fluctuation. In this limit, the chemotactic performance is of course bad. Thus an

intermediate noise level works best for the cell.

In [10] it was shown that for a shallow ligand gradient, the chemotactic drift velocity

shows a peak at a specific noise strength, while the localization remains constant at

low noise level and decreases to zero as noise increases. The optimal noise level ob-

served for drift was explained by using a simplified model where (a) the internal state

of the signaling pathway is described just in terms of activity and both methylation

level and CheY-P level are expressed as a function of activity, (b) tumblings are as-

sumed to be instantaneous, (c) the sigmoidal nature of dependence of tumbling rate

on activity was approximated by making the tumbling rate zero as the activity value

falls below a threshold. Within this simplified model, it was shown that the drift mo-

tion results from the difference in the amount of time a right-mover and a left-mover

spends in the small activity state. With increasing noise these small activity states

are reached more often and hence drift velocity also increases. For large noise, the
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difference between right- and left-mover again decreases, causing the drift velocity to

go down. In comparison, our data in Fig. 4.6 clearly show that for a given noise, high

CheY-P level (which corresponds to high activity value) makes negligible contribu-

tion to drift velocity, and the contribution increases as CheY-P level (or the activity)

becomes lower. Importantly, the same data also show that when CheY-P level falls

below a certain (noise-dependent) threshold, the contribution starts decreasing again

and even becomes negative. This threshold CheY-P level, which occurs at the left-

tail of CheY-P distribution, goes down as noise strength becomes higher and this

is a crucial factor in explaining the noise induced enhancement of chemotactic drift

velocity, which was not captured in [10].

It should be possible to experimentally verify the existence of threshold CheY-P level

that we predict from our model here. Monitoring the switching events from CCW to

CW bias of flagellar motors, and keeping track of the cell position, one can obtain

information about all the runs up and down the gradient. The CheY-P level at the

tumbling event can be measured from the CW bias of the motors when the switching

occurs. Using these data, it should be possible to determine ∆(yP ) experimentally

and directly verify whether it becomes negative for low CW bias. Moreover, the

methylation noise strength depends on the biochemical rate parameters and the total

concentration levels of CheA, CheY and CheZ proteins [11]. Thus even within an

isogenic cell population, with identical pathway topology where biochemical rates are

same, the protein concentrations can vary due to noisy gene expression. It will be

interesting to experimentally measure localization or chemotactic drift velocity for

different methylation noise strengths and verify the existence of an optimum noise

level.
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Chapter 5

Effects of intracellular environment

on the chemotactic performance of

E. coli in a time varying nutrient

profile

In many situations the chemoattractant concentration has an explicit time- depen-

dence, e.g. the chemoattractant molecules can have a finite lifetime, beyond which

it degrades, or the molecules can perform diffusive motion in the medium. In such

situations, the long term chemotactic performance, based on the steady state location

of the cells, may not be a suitable criteria to consider. Rather an efficient chemotaxis

in this case will involve climbing up the concentration gradient while it lasts, and

spotting the nutrient-rich regions as quickly as possible. The study of first passage

properties of the system proves useful in this regard. We measure the time needed

for the cell to reach the nutrient-rich regions for the first time, and averaged over

several cell trajectories, this gives the mean first passage time. A low value of first

passage time indicates an efficient search process and this proves to be particularly

advantageous when the environment is depleting rapidly of the nutrient chemical. In

an adverse environment where nutrient is sparse, or degrading rapidly, the amount of

nutrient encountered by the cell along its trajectory, is an useful measure of chemo-

tactic performance. This quantity is defined as uptake [1] and a high uptake means

the cell moves in such a way that it intercepts a large quantity of nutrient along its

trajectory, which is clearly the best it can do in an adverse situation.
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We find that the first passage time of the cell decays monotonically with noise. Since

long runs are more probable at large noise, the cell explores the system faster and the

first passage time goes down. For time-dependent environment, when the nutrient

is degrading, or diffusing in the medium, our measurement of uptake again shows a

peak at a particular noise strength. However, in this case, there are more parameters

in the system, e.g. lifetime or diffusivity of the nutrient, and one has to tune these

parameters also to find the best chemotactic performance.

In this chapter, we consider a situation where a certain amount of chemo-attractant

or nutrient is injected in the medium at a spatial location x̄, following which the

chemo-attractant undergoes diffusion and degradation in the medium. Then the

concentration profile of the chemo-attractant has the shape of a Gaussian whose

width keeps increasing with time and whose background level keeps falling with time.

After a while, when the width of the Gaussian reaches a value σ0, a bacterial cell is

introduced in the medium at a position x0. The nutrient concentration experienced

by the cell at a position x at time t after its introduction is then given by

c(x, t) = c0e
−t/τd









1 +

exp

(

− (x− x)2

σ2
0 + 4Dt

)

√

2π(σ2
0 + 4Dt)









, (5.1)

where D is the nutrient diffusivity, τd is the time-scale of nutrient degradation. The

chemotactic performance in this case is measured by (a) the first passage time of

the cell measured at a region close to the peak of the Gaussian where the nutrient

concentration is highest, and (b) uptake, defined as the mean amount of nutrient

encountered by the cell along its trajectory up to a large enough observation time

[1] . This is measured by the quantity U =
∫ tobs
0

dt
∫ L

0
dxc(x, t)Pλ(x, t). Note that

due to degradation of the nutrient, the integrand vanishes for t≫ τd and the uptake

saturates to a finite value, even as tobs is increased. We examine the dependence of

first passage time and uptake on the signaling noise. We limit our studies to one

dimension.

5.1 Decaying nutrient profile

First we consider the limit when D is very small. In this case, the cell experiences a

Gaussian concentration profile with almost fixed width σ0, and an exponential decay
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of the overall concentration level. Starting from an initial position xi we measure

the time taken by the cell to reach the peak region around x̄ for the first time.

Clearly, this first passage time is a stochastic variable and for different trajectories

of the cell it takes different values. The probability distribution of the first passage

time generally has a long tail which makes the mean much larger than the most

probable or typical value [2, 3]. In Fig. 5.1A we plot the mean first passage time as

a function of methylation noise strength λ. We find that the mean first passage time

decreases with λ. This qualitative behavior is similar to our observation in Fig. 4.8

when there was no degradation of the nutrient. However, a quantitative comparison

between these figures show that when the nutrient degrades, the first passage time

takes higher value for the same noise strength. This effect is visible even when the

medium is homogeneous (data points shown by circles in Fig. 5.1A). A simple way

to understand why degradation of nutrients makes the search process slower is that

when nutrient degrades, even when the cell is moving in a homogeneous medium, it

experiences a decreasing concentration along its trajectory, which makes it tumble

more. This makes the average run durations shorter and hence the mean first passage

time longer [4]. Note that for small λ, the actual value of the mean first passage time

is much longer than the degradation time-scale τd. In this case, the typical first

passage time, which is much smaller than the mean first passage time, is perhaps a

more suitable measure of chemotactic performance. In Fig. 5.1B we plot the typical

first passage time as a function of λ and find that just like the mean, the typical

value also shows similar qualitative dependence on noise.

The uptake U measures the amount of nutrient intercepted by the cell along its

trajectory up to a certain observation time tobs. We find that the uptake may increase

or decrease monotonically with noise, or may even show a peak, depending on the

degradation time-scale τd. For small values of τd’s we find that uptake increases

with noise (Figs. 5.2A-C). In this case, when the nutrient degrades very fast, the

maximum contribution from uptake comes from those trajectories with very long

runs, which enable the cell to reach the peak of the Gaussian before the nutrient had

degraded significantly. As λ increases, the probability of such long runs increases

and hence uptake also increases. On the other hand, when τd is large, then the

degradation happens slowly and within the large but finite observation time tobs, not

much degradation has taken place. In this limit we expect to recover the results for

the time-independent nutrient environment. Indeed our data in Figs. 5.2D-I show

that uptake develops peak at particular λ values and as τd increases the peak position

approaches the optimal λ∗ observed in Fig. 4.1B.
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Figure 5.1: First passage time vs noise strength for degrading nutrient
profile. (A): Mean first passage time T (x0, xf ) decreases with λ. The mean
first passage time has higher values than that in Fig. 4.8 where no degradation
is considered. (B): The typical first passage time T (xi, xf ) has much smaller
value than the mean, but also decreases with λ. The circles show the data for
c(x, t) = c0e

−t/τd and squares are for c(x, t) given by Eq. 5.1 with D = 0. These
data are for the one dimensional case and we have used τd = 500sec, σ0 = 100µm.
Other parameters are as in Fig. 4.8A.

5.2 Nutrient profile with decay and diffusion

In the case when the nutrient diffusivity D is not so small, the nutrient diffusion

cannot be neglected over the time-scale of cell movement, and the cell experiences

the full time-dependent nutrient profile with decay and diffusion, given in Eq. 5.1.

For a given value of D and τd, we find same qualitative behavior for the first passage

time, as found in the previous subsection for negligible D.

However, uptake shows interesting difference depending on the choice of D. For

a given value of τd, when D is very small, we recover the results of the previous

subsection. In this regime, the behavior of uptake is controlled by τd. For our choice

of τd = 100s, we find that (see Figs. 5.3A-D) uptake increases with noise when D is

small, in agreement with Fig. 5.2A-C. On the other hand, when D is very large, then

the nutrient diffuses very fast and soon the concentration gradient in the medium

disappears and the dependence of uptake on cell trajectory ceases to exist. The

variation of uptake with λ is much weaker in this case. The short time dynamics of

the cell in this case decides the uptake variation. The more time the cell is able to

spend close to the peak of the Gaussian profile before the profile flattens or nutrient

degrades, larger will be its uptake. When λ is large, the cell executes long runs and

has shorter first passage time to the peak region, which reduces its residence time in
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Figure 5.2: Change in uptake as a function of noise strength for decaying
Gaussian concentration profile: (A-C): For fast degradation of the nutrient,
uptake increases with λ, since maximum contribution to U in this case comes from
those trajectories with small first passage times. (D-G): For a slower degradation
of the nutrient, uptake starts decreasing for very large noise, and a peak is observed.
Reaching the peak in the shortest possible time is not the single most important
criterion any more. When the nutrient lasts for some time, those trajectories where
the cell takes longer to reach the peak and then spends longer time in the peak
region, contribute more towards uptake. (H-I): For a very slow degradation, the
peak of uptake moves closer to the optimal noise λ∗, observed in Fig. 4.1B. The
values of U0 used in panels (A-I) are 406, 1628, 2449, 3064, 5956, 10023, 11782,
15068, 17551 mM , respectively. These data are for one dimensional system and
we have used tobs = 1000sec. Other simulation parameters are as in Fig. 5.1.

the region that lies in between its initial position and the peak. So uptake is small for

large λ. But when λ is small, the first passage time is larger and the cell spends most

of its short time trajectory trying to climb up the concentration gradient, reaching

the peak of the Gaussian profile. This increases the uptake. Thus for very large D
uptake decreases with λ, as shown in Figs. 5.3G-I. Therefore, for intermediate D’s

uptake must show a peak with λ Fig. 5.3E-F.
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Figure 5.3: Change in uptake as a function of noise strength for nutri-
ent profile with diffusion and degradation. (A-D): For slow diffusion of the
nutrient, uptake increases with noise for our choice of τd. In this case, uptake is
governed by those trajectories where cell executes long runs. (E-F): For a faster
diffusion of nutrient, uptake shows a peak as a function of λ. But the variation
is much weaker. (G-I): For very fast diffusion of nutrient, uptake decreases with
noise. The values of U0 used are: 1730, 1736, 1738 mM in panels A,B,I, re-
spectively, 1740mM in panels C,H, 1741mM in G, and 1742mM in D,E,F. We
have used one dimensional system and the nutrient concentration in Eq. 5.1 with
τd = 100sec, σ = 10µm, tobs = 200sec here. Other simulation parameters are same
as Fig. 5.2.

5.3 Conclusion

In this chapter, we have considered the case when the nutrient environment has

spatio-temporal variation, caused by diffusion and degradation of the nutrient in

the medium. For this case the chemotactic performance of the bacterium is best

characterized by the first passage time and uptake. While first passage time shows

a monotonic decrease with the methylaton noise strength, the uptake may show
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a peak resulting from an interplay of time-scales associated with degradation and

diffusion processes. In harsh environment also the bacterium can behave as a most

efficient chemotactic performer depending on the various nutrient parameters and

internal biochemical conditions. For any nutrient concentration profile which has

both spatial and temporal variation, the best chemotactic performance depends both

on the internal and external conditions.
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Chapter 6

Effects of signaling noise and the

motor adaptation on the behavior

of E. coli in a spatially varying

nutrient profile

In chapter 4 we have discussed the behavior of the cell in presence of a spatially

varying nutrient profile and found the results for the effects of the signaling noise

on the efficiency of chemotactic performance of the bacterium. It has been shown

previously [1] that when cells were exposed to a step of attractant concentration,

the CW bias of the motor changes and it eventually returns to the pre-stimulus CW

bias within a few seconds. This adaption of CW bias to the changes of background

concentration for repellent are also similar but inverted. In recent studies [2] it has

been shown that this adaption in the CW bias happens not only due the methylation

demethylation(i.e., CheR-CheB reactions) process of signaling pathway but also due

to motor itself. For a mutant bacterium whose CheR-CheB reaction has been deleted,

it has been shown that the CW bias partially returns to the prestimulus value when

the background concentration of the bacterium is suddenly changed to a new level

of concentration. This adaption occurs over time scale (≈ 100sec) longer than the

typical bacterial adaptation time scale (≈ 10sec). So far we didn’t consider this

motor adaptation in the model of bacterial chemotaxis in our studies but it will be

interesting to see that how the inclusion of the motor adaption in our model will

affect the results that have been obtained in Chapter 4.
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Model description

We used the same model for the time evolution of activity, CheY-P level and methy-

lation level as in Chapter 4. But we explicitly include the adaptation of the motor’s

CW bias in our model. This also results in replacing instantaneous tumble by a

finite tumble duration. Let us consider that the bacterium remains in two states run

(s = 1) and tumble state(s = 0). The CW bias of the motor depends on the CheY-P

protein concentration level yP [3] in the following relation,

CW =
ynP

ynP +Kn
, (6.1)

where n is the Hill coefficient of the sigmoidal function obtained in [2] and K is the

yP level at which the CW bias becomes half. The time spent in tumble mode τCW

would be the ratio between the CW bias and the switching frequency dCW
dyP

. In small

time dt the probability that the cell in run mode will tumble is given by the [4]

Ptum =
dt

τCCW
(6.2)

where τCCW is the time spent in the CCW mode and is given by

τCCW =
1− CW

dCW
dyP

. (6.3)

We consider a one dimensional motion of the cell, with two reflecting boundary walls

at the positions x = 0 and x = L. At each time step dt if the cell is in s = 1 state,

the cell will tumble with probability dt
τCCW

or it will move in the same direction with

speed v. Similarly, if the cell is in tumble mode it will change its state from tumble

to run with probability dt
τCW

and choose the direction of motion randomly to the left

or right with probability half each. We measure localization and the drift velocity

of the cell as a function of the methylation noise in presence of a static nutrient

concentration profile c(x) = c0(1 + x/x0).
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Figure 6.1: Localization shows a peak as a function of noise strength.
〈C〉− c0 vs the noise strength λ with c(x) = c0(1+x/x0) with x0 = 20000µm. The
optimum noise strength λ∗ ≃ 0.002 in this case. Inset shows the plot for λ∗ vs x0.
We find no strong dependence of λ∗ on x0. All others parameters are same as in
Chapter 4

6.1 Peak of localization and drift velocity at opti-

mum noise

As discussed in Chapter 4, the localization, < C >=
∫ L

0
dxc(x)Pλ(x), is an useful

performance criterion to judge how effectively the cell is able to exploit the nutrient-

rich region in the long time limit. We find that localization is maximum for a certain

λ = λ∗ (data in Fig. 6.1). As found in Fig. 4, even in this case, λ∗ does not depend

strongly on the concentration gradient of the nutrient. However, the quantitative

value λ∗ = 0.002 is lower than the λ∗ observed in Fig. 4.1. Thus including motor

adaptation in our description, does not change the qualitative conclusion that local-

ization reaches a peak at an optimum noise, but the quantitative position of the peak

shifts leftward. We find similar results even for our measurement of chemotactic drift

velocity (see Fig. 6.2). In this case the position of peak is at λo = 0.008, somewhat

higher than λ∗. This can also be explained in a similar way, as done in chapter 4,

looking at the variation of average displacement in a run, and average run duration

with noise.
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Figure 6.2: Chemotactic drift velocity shows a peak as a function of the
noise strength. The optimal noise strength λo is found to be higher than that
for localization data in Fig. 6.1. We have used c(x) = c0(1 + x/x0) here and all
simulation parameters are as in Fig. 4.1.

6.2 Conclusion

In this chapter we have included the motor adaptation part in the flagellar motor

and have measured the chemotactic performance of the bacterium. In this chapter,

we have studied the effect of signaling noise on chemotactic performance of an E.coli

cell, whose intracellular pathway model now explicitly includes motor adaptation.

We find that the main conclusion of Chapter 4 remains unchanged that there is an

optimum noise where performance is the best. The value of the optimum noise is

somewhat lower though. Thus presence of optimal noise is verified even when an

entirely new module of motor adaptation has been added in our system.
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Chapter 7

Run-and-tumble motion with

step-like response to a stochastic

input

7.1 Introduction

In the previous chapters 3-6 we have discussed the signaling pathway of the E.coli

bacterium and the effects of the internal noise on the chemotactic behavior of the

cell in presence of homogeneous, spatially varying and time dependent nutrient con-

centration profile. To see different aspect of the cellular behaviour we used the

model present in the literature [1–3], where the cell perform a run-tumble motion

and the motor of the cell fluctuates between CCW or CW state. The dependence

of CW bias on CheY-P concentration[4] is very sensitive and is an almost sigmoidal

dependence[5], where CW bias changes sharply from 0 to 1 as CheY-P concentration

varies within a small range. Since CW bias is the direct measure of tumbling rate,

this means the probability for a cell to tumble is vanishingly small when CheY-P level

falls below a certain value, and when CheY-P level goes slightly higher, the tumbling

probability becomes very close to 1 and the cell almost always tumbles.

These observations motivates us to ask a more general and interesting theoretical

question: what is the effect of a sharp or sigmoidal switching response on a simple

run-and-tumble motion? To address this general question, we consider a run-and-

tumble random walker whose switching probabilities between run and tumble modes
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Figure 7.1: A typical time series of the signal y(t). The purple (continuous)
segments correspond to tumbles and the green (dashed) segments correspond to
runs. The threshold value y0 = 0.32 and the boundaries of the ∆ range at y0±∆/2
are marked by horizontal line. Every time y(t) exits the range through a boundary
different from the one it had used to enter the range, a switch happens.

depend on a certain (stochastic) input signal. To study the system in the simplest

possible setting, we consider only two values of the switching probabilities, 0 and 1.

An infinitely sharp response curve would mean that as the input signal level crosses a

certain threshold value, the switching probability jumps from 0 to 1. However, such

a sharp response means that within a finite time-interval there can be an infinite

number of switching events which is unphysical. So we introduce a small range of

width ∆ around the threshold value, such that the probability to switch from run

to tumble mode is zero (one) as the input signal stays below (above) this range. In

other words, run to tumble switch happens, as the input signal crosses the ∆ range

from below and goes above it. Once the random walker is in the tumble mode, the

tumble to run switch happens with probability one when the input signal decreases

and falls below the ∆ range. Thus the two switches happen at two different values of

the input signal level, which are separated by the range ∆. When the input signal has

any other value, no switching event takes place and the random walker just continues

in its current mode. In Fig. 7.1 we present a typical example.

We are interested to characterize the motion of the random walker in the long time

limit, and to understand how the fluctuations present in the input signal affect the

motion. We consider two types of cases here: one in which the dynamics of the

input signal is an independent process, and another in which the time-evolution of

the signal is also influenced by the position of the random walker. Since our study
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is motivated from the run-and-tumble motion found in several organisms in nature,

including E.coli, we choose the time-evolution of the signal from the well-studied

physical system of chemotactic pathway of an E.coli cell. The CheY-P level inside

the cell fluctuates with time and we consider this to be our input signal. In presence

of a concentration gradient of the nutrient, the CheY-P dynamics depends on the

local nutrient concentration, and hence on the cell position. However, when the cell

moves in a homogeneous nutrient environment, CheY-P fluctuation does not involve

the cell position. In the latter case, various quantities can be calculated exactly. We

show that since switching events can have only probabilities 0 and 1, the switching

can be described as a first passage process. From this, the probability to observe

a certain run (or tumble) duration can be calculated exactly. We also calculate

average run and tumble duration and show that both decrease as a function of the

signaling noise strength. Our Monte Carlo simulations agree well with our analytical

calculations. In the case when the signal dynamics also depends on the position

of the random walker, we find the steady state distribution of the random walker

position, for a given nutrient concentration profile in the medium, and show that it

is more likely to find the random walker in a region where the nutrient concentration

is higher. This shows that even within this very simple version of run-and-tumble,

where switching probabilities between the two modes are either 0 or 1, the basic

signature of chemotaxis, which is to find the walker in regions with more food with

more likelihood, is recovered.

This chapter is organized as follows. In Sec. 7.2 we study run-and-tumble motion

in a homogeneous environment, when the input signal dynamics is independent of

the random walker motion. We present our exact calculation for the probability

distribution of signal variable, run duration distribution of the random walker and

variation of mean run duration and tumble duration as a function of signaling noise

in this section. In Sec. 7.3 we consider a spatially varying nutrient environment and

present our numerical results for the position distribution of the random walker. A

summary and few conclusing remarks are presented in Sec. 7.4.
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7.2 Run-and-tumble motion in a homogeneous en-

vironment

Consider a one dimensional random walker with two possible modes: run and tumble.

During a run, the random walker moves with a fixed velocity along one particular

direction, in this case, left or right. During a tumble, the random walker simply stays

put at its current position. At the beginning of each new run, the random walker

decides at random whether to run leftward or rightward. The switching between

the two modes is controlled by a signal y(t) whose stochastic time evolution can be

written down (see below). If y(t) crosses y0 +∆/2 value from below, and the walker

is in the run state, then it switches to tumble mode with probability 1. If it is already

in the tumble state, then nothing happens. Similarly, a tumbler changes to a runner

with probability 1 when y(t) crosses y0−∆/2 from above. But at the time of crossing,

if the walker is in the run mode, nothing happens. Clearly, for y(t) < y0 −∆/2, the

random walker can only have the run mode and for y(t) > y0 + ∆/2, only tumble

mode can exist. In the range y0−∆/2 < y(t) < y0+∆/2, both modes can exist. Note

however, that no switching event can take place in this range. When y(t) enters the

range through one end, and exits the range through a different end, switch happens

at the time of exit. We have illustrated this process in Fig. 7.1.

It follows from the above description that our run-and-tumble dynamics is actually

different from that of an E.coli cell. Since we consider only switching events with

probability one, there is no additional source of stochasticity in our run-and-tumble

motion, apart from that present in the stochastic time-evolution of y(t). For a given

time-series of y(t), it is already fixed which modes are present at what times. We

will show below that this makes it possible for us to calculate many things exactly in

our system. For an E.coli cell, on the other hand, switching probabilities are sharply

varying, but continuous function of the CheY-P concentration [5], and it is possible

to have a switching event with small probability, which introduces another source of

noise in the cell trajectory.

In our model, we use the same dynamics of y(t) as that of CheY-P protein concentra-

tion inside an E.coli cell moving in a homogeneous nutrient background. Although

the run-and-tumble motion studied by us, is not exactly same as that found in an

E.coli cell, it is still interesting to see how our run-and-tumble system behaves when

it receives input from the same type of a stochastic signal. In the case when the cell

moves in a homogeneous nutrient background, c(x) = c0, the activity a(t) becomes a
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function of m(t) alone, and using Eqs. 3.1 and 3.3 in Chapter 3 one can write

da

dt
= kRNαa(1− a)(1− 2a)(1 +

Nαλ

2
) +Nαa(1− a)η(t) (7.1)

A quasi steady state approximation can be made at this stage, using the fact that

the y-dynamics is sufficiently fast, and hence at the time-scale over which a(t) is

changing, an average y concentration is felt, which gives y(t) = a(t)/(a(t) + kZ/kY ).

Then Eq. 7.1 becomes

dy

dt
= kRNα(1+

Nαλ

2
)
y(1− y − kZy

kY
)(1− y − 2kZy

kY
)

1− y
+Nαy(1− y− kZy

kY
)η(t). (7.2)

Writing q = kRNα, r = Nα and w = kZ/kY , we get

dy

dt
= q(1 +

rλ

2
)
y(1− y − wy)(1− y − 2wy)

1− y
+ ry(1− y − wy)η(t). (7.3)

η(t) is a Gaussian white noise with strength λ. To monitor the effect of input signal

fluctuations on the run-and-tumble dynamics, we vary λ in our simulations. Note

that the quasi steady state approximation used above, means that since a(t) always

stays within the range [0, 1], the variable y(t) should also stay in [0, ym], where ym =

1/(1 + kZ/kY ).

The value y0, then naturally corresponds to that value of CheY-P concentration for

which CW bias has the value 1/2. This value turns out to be about 3.1µM [5].

The total concentration of CheY protein in a cell is ∼ 9.7µM [6]. Since y(t) in Eq.

7.3 stands for the ratio of CheY-P and CheY concentration (see Sec. 3.2), we have

y0 = 0.32. Moreover to ensure that the switching process is sufficiently smooth, and

two switching events are separated from each other by a minimum time interval, we

choose a small width ∆ around y0 that separates the two switching events from run

to tumble, and from tumble to run. Here we present data for ∆ = 0.016 and we

have also verified (data not shown ) that our conclusions do not change for different

choices of ∆.

In our simulations, we consider a one dimensional box of length L, at the two ends

of which there are reflecting boundary walls. In a time-step dt, the random walker in

the run mode moves a distance vdt where v is the run speed. In a tumble mode, there

is no displacement. After each tumble the random walker will choose its direction

randomly. Throughout the work we have used L = 10000µm, v = 10µm/s, dt =

0.001s. One point about the choice of λ range should be mentioned here. A very large
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λ increases fluctuations in y(t) so much that it crosses the ∆ range too frequently,

affecting smoothness of the underlying process. On the other hand, a very small λ

makes the y-distribution too narrow and y(t) hardly leaves the ∆ range. For our

choice of ∆, we find 0.001 ≤ λ ≤ 0.1 to be suitable range. In the remaining part of

this section, we present our exact calculations and numerical simulation results on

various quantities.

7.2.1 Steady state probability distribution of y in run and

tumble modes

Let P (y, t) be the probability distribution of the stochastic variable y(t). From Eq.

7.3 we can construct the Fokker-Planck equation for P (y, t)

∂P (y, t)

∂t
= − ∂

∂y
[B1(y)P (y, t)] +

1

2

∂2

∂y2
[B2(y)P (y, t)], (7.4)

where, B1(y) = q(1 + rλ
2
)y(1−y−wy)(1−y−2wy)

1−y
and B2(y) = r2kRλy

2(1 − y − wy)2. In

steady state, left hand side of Eq. 7.4 vanishes. Also, by definition, y can not become

negative. Therefore, we use reflecting boundary conditions at y = 0 and y = ym

which gives the following solution in steady state

P (y) =
wκ(1− y)−2κ[y(1− y − wy)]κ−1

B(κ, κ) , (7.5)

where B(κ, κ) =
∫∞
0
(x(1 − x))κ−1dx = Γ[κ]2

Γ[2κ]
and κ = 2/(rλ). In Fig. 7.2A we

compare this result against numerical simulation and find good agreement for different

values of the noise strength λ. In the right panel of the same figure we plot the

individual probability of finding the random walker in run-state and in tumble-state

for a given value of y, after steady state has been reached. We denote the run-

state probability by PR(y) and the tumble-state probability by PT (y), and clearly,

PR(y) + PT (y) = P (y). Now, as follows from our dynamical rules, as y falls below

the value y0 −∆/2, tumble modes can not exist and the random walker is always in

the run mode, i.e. PR(y) = P (y) for y ≤ y0 −∆/2. Similarly, for y ≥ y0 +∆/2, we

have PT (y) = P (y) and PR(y) = 0. Both PR(y) and PT (y) have non-zero values for

y0 −∆/2 < y < y0 +∆/2. To solve for PR(y) in this range, we notice that it follows

the same Fokker-Planck equation as Eq. 7.4 and in steady state this equation has



82

 0

 5

 10

 15

 20

 0.2  0.3  0.4

A

λ=0.1

λ=0.01

λ=0.003

P
(y

)

y

 0

 4

 8

 12

 16

 0.312  0.318  0.324

B

λ=0.003

λ=0.01

λ=0.1

λ=0.003

λ=0.01
λ=0.1P

R
(y

),
P

T
(y

)

y

Figure 7.2: Steady state probability distribution of the signal variable.
A: For different noise strength λ, probability to observe a particular value y of
the signal variable is plotted against y. Discrete points are from simulation and
continuous lines are from analytical calculation using Eq. 7.5. B: Probability
PR(y) and PT (y) to observe a runner and a tumbler, respectively, with a given
y value in the range [y0 − ∆/2, y0 + ∆/2]. The decreasing curves correspond to
PR(y) and increasing curves are for PT (y). The discrete points from simulations
show excellent agreement with continuous lines from analytics. All simulation
parameters are as specied in Sec. 7.2 and Sec. 3.2.

the general solution

PR(y) =
w

(1− y)2

[

1− ( 2wy
1−y

− 1)2

4

]κ/2−1
[

C1P
κ
κ

(

2wy

1− y
− 1

)

+ C2Q
κ
κ

(

2wy

1− y
− 1

)]

,

(7.6)

where P κ
κ and Qκ

κ are associated Legendre polynomial of first and second kind, respec-

tively. The constants C1 and C2 can be determined from the boundary conditions

PR(y0 − ∆/2) = P (y0 − ∆/2) and PR(y0 + ∆/2) = 0, discussed above. PT (y) can

simply be obtained from PT (y) = P (y)− PR(y). In Fig. 7.2 we verify our analytical

calculation against numerical simulations for few different values of the noise strength

λ and find good agreement.

7.2.2 Average run and tumble duration decreases with sig-

naling noise

The simplest possible quantity to characterize the run-and-tumble motion is the

average duration of a run mode and a tumble mode. In Fig. 7.3A we plot average
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Figure 7.3: Average run and tumble duration as a function of signaling
noise strength λ. A. The average run duration τ1 decreases as a function of λ.
The range of variation of τ1 is quite significant. B. The average tumble duration
τ2 decreases with λ but the range of variation is much smaller than that for τ1.
Discrete points are from simulations and continuous lines are from analytics. The
simulation parameters are same as in Fig. 7.2.

run duration as a function of the noise strength λ. We find that as signaling noise

decreases, the average run duration increases. In fact for low λ values, average run

duration becomes so large that in our simulations we have to consider large system

size L to avoid finite size effects. Fig. 7.3B shows variation of average tumble duration

with noise. Below we discuss how to calculate these averages exactly.

Note that at the beginning of a run, i.e. just at the instant when tumble to run

switch happens, the input signal y always has the value y0−∆/2. Starting from this

value, when y crosses y0 +∆/2 for the first time, the run ends and a tumble begins.

Therefore, a run can be viewed as a first passage event in the y-space. This makes it

possible to calculate the average run duration and even the run-length distribution

(see next subsection) exactly. If T (yi, yf) denotes the mean first passage time for

y to reach the value yf for the first time, starting from an initial value yi, then

T (y0 −∆/2, y0 +∆/2) represents the mean run duration and T (y0 +∆/2, y0 −∆/2)

stands for the mean tumble duration.

Let p(y′, t|y, 0) be the conditional probability that the input signal has the value y′

at time t, given that it started with the value y at time t = 0. This conditional

probability follows the backward Fokker-Planck equation [7]

∂p(y′, t|y, 0)
∂t

= B1(y)
∂p(y′, t|y, 0)

∂y
+

1

2
B2(y)

∂2p(y′, t|y, 0)
∂y2

(7.7)
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where B1(y) and B2(y) are drift and diffusion terms appearing in Eq. 7.4. To

calculate the mean first passage time at y0+∆/2, starting from y0−∆/2, we put an

absorbing boundary condition at the target y = y0+∆/2 and remember the reflecting

boundary condition at y = 0. The survival probability G(y, t; y0+∆/2) is defined as

the probability that starting from y < y0+∆/2, the signal variable has not reached the

target value y0 +∆/2 till time t. Clearly, G(y, t; y0 +∆/2) =
∫ y0+∆/2

0
dy′p(y′, t|y, 0).

From Eq. 7.7 it follows that G(y, t; y0 +∆/2) satisfies the following equation

∂G(y, t; y0 +∆/2)

∂t
= B1(y)

∂G(y, t; y0 +∆/2)

∂y
+

1

2
B2(y)

∂2G(y, t; y0 +∆/2)

∂y2
(7.8)

with the initial condition G(y, 0; y0 + ∆/2) = 1 and the reflecting and absorbing

boundary conditions are implemented as ∂yG(y, t; y0+∆/2)|y=0 = 0 and G(y, 0; y0+

∆/2)|y=y0+∆/2 = 0. The survival probability till time t can be alternatively stated

as the probability that the first passage time is larger than t. Therefore, the first

passage time distribution is simply −∂tG(y, t; y0+∆/2). The mean first passage time

is then T (y, y0+∆/2) = −
∫∞
0
dt t ∂tG(y, t; y0+∆/2) =

∫∞
0
dtG(y, t; y0+∆/2) which

follows the equation

B1(y)
∂T (y, y0 +∆/2)

∂y
+

1

2
B2(y)

∂2T (y, y0 +∆/2)

∂y2
= −1. (7.9)

This equation can be solved to get the mean run duration as

T (y0 −∆/2, y0 +∆/2) = τ1 = 2

∫ y0+∆/2

y0−∆/2

dy

ψ(y)

∫ y

0

ψ(z)

B2(z)
, (7.10)

where ψ(x) = exp
[∫ x

0
dx′2B1(x

′)/B2(x
′)
]

. Similarly, mean tumble duration can be

written as

T (y0 +∆/2, y0 −∆/2) = τ2 = 2

∫ y0+∆/2

y0−∆/2

dy

ψ(y)

∫ ym

y

ψ(z)

B2(z)
. (7.11)

where reflecting boundary condition is used for y = ym and absorbing boundary

condition for y = y0−∆/2. We find good agreement with the simulation data in Fig.

7.3.
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Figure 7.4: Distribution of run duration for different value of noise
strength. A: Simulation results for the distribution of the run duration of the
bacterium Prun(t). The distribution has a peak whose position shifts leftward as
noise increases. B: The Laplace transform of Prun(t) analytically calculated and
plotted in continuous lines. The discrete points show Laplace transform calculated
from the data in panel A and we find good agreement. The simulation parameters
are same as in Fig. 7.2

7.2.3 Distribution of the run duration of the random walker

Using the correspondence between the run and tumble durations of the random walker

and the first passage events for the input signal, it is possible to calculate not only

the average run and tumble durations, but also the full distribution function of these

durations. We outline this calculation in this subsection. First we present our nu-

merical data for the run duration distribution. In Fig. 7.4A we plot the probability

Prun(t) that the random walker has a residence time t in the run mode, for different

values of the noise strength λ. We find that the probability vanishes for very small

and large t, and shows a peak in between. The peak position depends on λ and as

λ increases, the peak shifts towards smaller values of t. In other words, the most

probable run duration becomes smaller and smaller as noise increases. This behavior

is similar to that of the mean run duration shown in Fig. 7.3. As noise increases,

the signal y(t) takes less and less time to reach the value y0 + ∆/2, starting from

y0 −∆/2 since the diffusivity B2(y) becomes larger with noise.

To calculate the run duration distribution analytically, we focus on its Laplace trans-

form. First we consider the Laplace transform of the survival probability G̃(y, s) =
∫∞
0
dt e−st G(y, t; y0+∆/2), where for simplicity of notation we have dropped y0+∆/2
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from the argument of the G̃. From Eq. 7.8 it follows that

1

2
B2(y)∂

2
yG̃(y, s) +B1(y)∂yG̃(y, s)− sG̃(y, s) = −1, (7.12)

Defining Ũ(y, s) = G̃(y, s)− 1
s
we get

1

2
B2(y)∂

2
y Ũ(y, s) +B1(y)∂yŨ(y, s)− sŨ(y, s) = 0. (7.13)

whose general solution is

Ũ(y, s) =

[

wy(1− y − wy)

(1− y)2

]κ/2 [

D1P

√
κ2+4µ(s)

κ

(

2wy

1− y
− 1

)

+D2Q

√
κ2+4µ(s)

κ

(

2wy

1− y
− 1

)]

,

(7.14)

where µ(s) = 2s
λqr

. The constants D1 and D2 can be determined from the boundary

conditions: G̃(y0+∆/2, s) = 0 and ∂yG̃(y, s)|y=0 = 0 for all s. The Laplace transform

of first passage time distribution is given by 1 − sG̃(y, s) which can be evaluated at

y = y0−∆/2 to obtain the Laplace transform of run-length distribution. We compare

our calculation with simulation results in Fig. 7.4B and find good agreement.

7.3 Run and Tumble motion in an environment

with spatial variation

In the previous section, we studied the situation, when the coupling between the

stochastic signal y(t) and the random walk motion is one way. While the random walk

switches between the run and tumble modes depending on the value of the signal, the

signal itself fluctuates independently according to Eq. 7.3. In this section, we consider

a two-way coupling between the signal dynamics and the random walker motion.

More specifically, we consider a time-evolution equation for y(t) which involves the

position x of the random walker as well. Thus, the random walker runs and tumbles

following the y(t) value as before, but the random walker position now influences the

time-evolution of y(t). In the case when the nutrient concentration is not uniform,

but varies linearly in space, c(x) = c0(1 + x/x0), activity a(t) in Eq. 3.1 changes

when the methylation level changes , or when the cell moves in the medium. In that
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Figure 7.5: The distribution Pλ(x) of the random walker position x for
different noise strengths. We have used c(x) = c0(1 + x/x0) here and for all λ
values, Pλ(x) shows a positive slope. For large λ, the slope is less. We have chosen
c0 = 200µM and x0 = 200000µm here and all other parameters are as in Fig. 7.2.

case, Eq. 7.2 becomes

dy

dt
= q(1+

rλ

2
)
y(1− y − wy)(1− y − 2wy)

1− y
−s y(1− y − wy)

(KA + c(x))(KI + c(x))
+ry(1−y−wy)η(t).

(7.15)

The run-and-tumble motion of E.coli in such a nutrient environment gives rise to

chemotaxis and in the long time limit there is larger probability to find the cell at

regions with higher c(x) [2, 8–10].

In Fig. 7.5 we show the data for the position distribution of the random walker in

the long time limit. We find that Pλ(x) increases with x, roughly linearly. This result

shows that although the run-and-tumble dynamics is significantly different from and

simpler than that of an E.coli cell, the walker still manages to locate itself in the region

with higher nutrient concentration with larger probability. Our data show that Pλ(x)

varies as c(x) for small and intermediate λ values. However, when λ becomes large,

Pλ(x) gradually becomes flat, as expected in the limit of large signaling noise, when

the time-evolution of y(t) is mainly governed by the stochastic fluctuations, and its

x-dependence can be almost ignored.
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7.4 Conclusion

In this chapter, we have investigated the effect of a sharp step-like response function

on a run-and-tumble random walk. In nature run-and-tumble motion is ubiquitous

in a wide variety of organisms. While an intra-cellular biochemical reaction network

controls the motion in all these cases, some organisms, for example, E. coli bacteria,

show a particularly sensitive dependence on these reactions. The transition rate of

an E. coli cell from run mode to tumble mode depends strongly and sensitively on

the fluctuating concentration of the motor protein CheY-P, which is an important

component of its reaction network. This motivates a general theoretical question

that we consider in this paper: what happens when a run-and-tumble motion is

coupled to a stochastic input signal via a sensitive response. We are interested in

two different cases: one in which the stochastic dynamics of the input signal is an

independent process and another in which the signal variable dynamics also depends

on the spatial location of the random walker. In the first case, we specifically choose

the signal variable dynamics from that of CheY-P protein concentration for an E.

coli cell in a homogeneous nutrient environment. The simple switching dynamics

that we use for our run-and-tumble walker makes it possible to calculate many things

exactly in this case. In the second case, we consider a signal variable whose time-

evolution mimics CheY-P dynamics for an E. coli cell in a spatially varying nutrient

environment. Interestingly, our numerical simulations show that even with its simple

run-and-tumble strategy, the random walker manages to localize in a region where

nutrient density is higher.

The run-and-tumble motion that we consider here, is significantly different from that

executed by an E.coli cell. While for an E.coli cell, the tumbling bias varies sensi-

tively, but continuously as a function of the CheY-P level, in our model the switching

probability between the run and tumble modes show a sharp jump from 0 to 1. This

allows us to address the theoretical question of the effect of sharp response in the sim-

plest possible setting. Although our results in Fig. 7.5 show that the basic signature

of chemotaxis is still retained in our model, we also find some important differences

from well-known E.coli behavior. One such crucial difference is observed in run du-

ration distribution. For low signaling noise, E.coli shows exponential distribution of

run duration and as the signaling noise gets larger, longer runs become more proba-

ble and the distribution changes to a power law [11–15] . In contrast, in our model,

runs can be described as first passage events, whose distribution (see Fig. 7.4A) has

a peak and shows a power law tail for all values of λ. Moreover, we also find that
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with increasing noise, longer runs become less probable in our case. As noise level

becomes lower, the mean run duration in our model increases rather strongly. For

E.coli motion also mean run duration becomes larger for lower signaling noise, but

the variation is much weaker in that case [15].

As we mentioned in Sec. 7.2, the run-and-tumble trajectory of E.coli has an additional

level of stochasticity coming from the fact that switching probability can be less than

one, which means for a given time-series of the input signal, it is possible to generate

different run-tumble trajectories. However, in our model, switching probability is

either 0 or 1 and can be nothing in between. This deterministic nature means that

only one run-and-tumble trajectory is possible for a given signal time-series. Although

the direction of a new run is still chosen randomly at the time of every tumble to

run switch in our model, but in a homogeneneous nutrient background it makes no

difference whether the random walker is running towards left or right. The differences

mentioned in the previous paragraph may be alternatively viewed as the result of

this deterministic vs stochastic aspect. It also shows that although CW bias of E.coli

increases really sharply as CheY-P level changes, when that response is actually

replaced by a jump in the switching probability, system shows qualitatively different

behavior in many aspects. It may be interesting to gradually vary the steepness of a

sigmoidal response curve and see if there is a crossover between the two behaviors.



Bibliography

[1] Y. Tu, T. S. Shimizu and H. C. Berg, Modeling the chemotactic response of

Escherichia coli to time-varying stimuli, Proc. Natl. Acad. Sci. U.S.A. 105, 14855

(2008).

[2] L. Jiang, Q. Ouyang and Y. Tu, Quantitative modelling of Escherichia coli

chemotactic motion in environments varying in space and time, PLoS Comp.

Biol. 6, e1000735 (2010).

[3] M. Flores, T. S. Shimizu, P. R. ten Wolde and F. Tostevin, Signaling noise

enhances chemotactic drift of E. coli, Phys. Rev. Lett. 109, 148101 (2012).

[4] Bren A, Eisenbach M (2000) How signals are heard during bacterial chemotaxis:

protein-protein interactions in sensory propagation. J Bacteriol 182: 6865-6873.

[5] Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor re-

vealed by monitoring signaling proteins in single cells. Science (New York, NY)

287:1652-1655.

[6] Milo et al. (2010) Nucl. Acids Res. 38 (suppl 1): D750-D753

[7] Gardiner CW (2004) Handbook of stochastic methods for Physics, Chemistry

and the Natural Sciences. Berlin: Springer-Verlag.

[8] de Gennes PG (2004) Chemotaxis and the role of internal delays. Eur Biophys

J 33: 691-693.

[9] Chatterjee S, Silveira RA da, Kafri Y (2011) Chemotaxis When Bacteria Re-

member: Drift versus Diffusion. PLoS Comp. Biol, vol 7 issue 12 e1002283.

[10] Dev S, Chatterjee S (2015) Optimal search time in E. coli chemotaxis. Phys.

Rev. E 91, 042714.

90



BIBLIOGRAPHY 91

[11] Korobkova E, Emonet T, Vilar JM, Shimizu TS, Cluzel P (2004) From molecular

noise to behavioural variability in a single bacterium. Nature 428:574-578.

[12] Tu Y, Grinstein G (2005) How White Noise Generates Power-Law Switching in

Bacterial Flagellar Motors, Phys Rev Lett 94: 208101.

[13] Matthaus F, Jagodic M, Dobnikar J (2009) E. coli Superdiffusion and Chemo-

taxisSearch Strategy, Precision, and Motility, Biophysical Journal, Volume 97,

946-957.

[14] Matthaus F, Mommer MS, Curk T, Dobnikar J (2011) On the Origin and Char-
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Appendix A

Drift velocity of a random walker

in presence of a linear nutrient

concentration field for response

function R(t) = δ(t)

Let us consider a random walker(RW) whose motion consist of two modes: run and

tumble. In run mode it moves in a straight line with constant speed v where in

tumble motion it does not move at all. After each tumble it chooses a new direction.

In one dimension there is only two direction either right or left. Let us consider that

the tumble is instantaneous so that the walker changes its current direction at each

tumble instantaneously with probability q . If τ is the average run duration of the

random walker then the probability then it will change its direction at tumble or the

tumbling probability in time between t and t + dt is dt
τ
. For a random walker which

is moving in a concentration profile like E. coli bacterium in a nutrient concentration

gradient, the tumbling probability depends on the concentration gradient and the

response function of the cell as described in Chapter 2. Let us consider that the

Random walker is placed in a linear concentration profile c(x) = x/x0, where x0 is

the concentration gradient. We also consider the response function of the random

walker R(t) = δ(t). If the walker starts a run from a fixed position x, where a

tumble has occurred, with an initial velocity vi and T is the average time duration

for occurring n tumbles and at each tumble the walker changes its direction with

probability unity (q = 1). Where T1, T2... are the average run-duration between two
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successive tumble and x1, x2... are the average tumble positions, so that

T = T1 + T2 + T3 + .... + Tn

T1 =
T1+ + T1−

2

T2 =
T2+ + T2−

2
..

x1 =
x1+ + x1−

2
(A.1)

x2 =
x2+ + x2−

2
...

Where T1+, T2+... are the average time duration between two tumbles for the tra-

jectories with initial velocity vi = v and T1−, T2−... are the average time duration

between two successive tumble for the trajectories with initial velocity vi = −v. x1+,
x2+... are average tumble positions for trajectory with initial velocity vi = v and x1−,

x2−... are average tumble positions for trajectory with initial velocity vi = −v. Let

us now consider the first case when vi = v. For this case the persistence probability

P+(ξ) is given by,

P+(ξ) = exp[−
∫ t+ξ

t

dt′

τ(t′)
]

≈ exp− ξ

τ [1 +
α

τ

∫ t+ξ

t

c(t′)dt′]

≈ exp− ξ

τ [1 +
α

τ

∫ t+ξ

t

dt′(c(x) +
vx(t′ − t)

x0
)]

= exp− ξ

τ [1 +
αxξ

τx0
+
αvξ2

2x0τ
]

where we have used the condition α << 1. Now the probability of stopping during

the interval ξ and ξ + dξ is given by,

− dP+(ξ)

dξ
= exp− ξ

τ [
1

τ
− αx

τx0
+
αxξ

τ 2x0
− αvξ

τx0
+
αvξ2

2τ 2x0
] (A.2)

So from the above probability distribution we can now calculate the average runtime

upto the first tumble and which is given by

T1+ =

∫ ∞

0

ξ(−dP+(ξ)

dξ
)dξ

= τ(1 +
αx

x0
+
αvτ

x0
). (A.3)
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So the first tumble after x will be at x1+ = x+ vT1+ = x+ vτ(1 + αc(x) + αvτ/x0).

Now if the bacterium would start the run with initial velocity vi = −v, one can

similarly write down the expression for persistence probability P−(ξ) and which is

given by

P−(ξ) = exp− ξ

τ [1 +
αxξ

τx0
− αvξ2

2τx0
] (A.4)

From which one can calculate the average runtime T1− and is given by

T1− = τ(1 +
αx

x0
+
αvτ

x0
). (A.5)

So that the average tumbling position after x if the bacterium would have started

with vi = −v is given by x1− = x − vT1− = x − vτ(1 + αx
x0

− αvτ
x0

). Now the average

tumbling position x1 is given by

x1 =
x1+
2

+
x1−
2

= x+
αv2τ 2

x0
. (A.6)

The average displacement is given by,

∆x1 = x1 − x =
αv2τ 2

x0
. (A.7)

For n = 2 case, similarly the T2+, T2−, x2+ and x2− can be calculated and are given

by

T2+ = τ [1 + αc(x1+)−
αvτ

x0
] = τ(1 +

αx

x0
)

T2− = τ [1 + αc(x1−) +
αvτ

x0
] = τ(1 +

αx

x0
)

x2+ = x1+ − vT2+ = x+
αv2τ 2

x0

x2− = x1+ − vT2+ = x+
αv2τ 2

x0
(A.8)

x2 =
x2+
2

+
x2−
2

= x+
αv2τ 2

x0
.

The average displacement after two tumble can be given by

∆x2 = x2 − x =
αv2τ 2

x0
. (A.9)
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One can similarly calculate the average displacement for many number of tumbles.

For n number of tumbles the average displacement will be

∆xn =
n

2

αv2τ 2

x0
, if n = even (A.10)

∆xn =
n + 1

2

αv2τ 2

x0
, if n = odd. (A.11)

The total time T for n number of tumbles is given by,

T = Σi=n
i=1

Ti+ + Ti−
2

= nτ +O(α). (A.12)

So the drift velocity can be given by

V (x) =
∆xn
T

=
αv2τ

2x0
(A.13)

Now for any q not equals to unity, the Eq. A.13 would be

V (x) =
αv2τ

2qx0
. (A.14)

In chapter 2 for first passage time analysis the c(x) has been chosen as Gaussian

form. Since now the gradient of the nutrient profile depends upon the position x,

the drift velocity of the cell will no longer be independent of the position x. For this

Gaussian nutrient profile we used the form

V (x) =
αv2τ

2q
c′(x), (A.15)

where c′(x) is the spatial derivative of the Gaussian concentration profile and using

this particular form of the drift velocity our analytics shows a good agreement with

the simulation results.
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